mirror of https://github.com/arendst/Tasmota.git
481 lines
13 KiB
C++
481 lines
13 KiB
C++
/*
|
|
xdrv_31_tasmota_slave.ino - Support for external microcontroller slave on serial
|
|
|
|
Copyright (C) 2019 Andre Thomas and Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_TASMOTA_SLAVE
|
|
/*********************************************************************************************\
|
|
* Tasmota slave
|
|
\*********************************************************************************************/
|
|
|
|
#define XDRV_31 31
|
|
|
|
#define CONST_STK_CRC_EOP 0x20
|
|
|
|
#define CMND_STK_GET_SYNC 0x30
|
|
#define CMND_STK_SET_DEVICE 0x42
|
|
#define CMND_STK_SET_DEVICE_EXT 0x45
|
|
#define CMND_STK_ENTER_PROGMODE 0x50
|
|
#define CMND_STK_LEAVE_PROGMODE 0x51
|
|
#define CMND_STK_LOAD_ADDRESS 0x55
|
|
#define CMND_STK_PROG_PAGE 0x64
|
|
|
|
/*************************************************\
|
|
* Tasmota Slave Specific Commands
|
|
\*************************************************/
|
|
|
|
#define CMND_START 0xFC
|
|
#define CMND_END 0xFD
|
|
|
|
#define CMND_FEATURES 0x01
|
|
#define CMND_JSON 0x02
|
|
|
|
#define PARAM_DATA_START 0xFE
|
|
#define PARAM_DATA_END 0xFF
|
|
|
|
|
|
#include <TasmotaSerial.h>
|
|
|
|
/*
|
|
* Embedding class in here since its rather specific to Arduino bootloader
|
|
*/
|
|
|
|
class SimpleHexParse {
|
|
public:
|
|
SimpleHexParse(void);
|
|
uint8_t parseLine(char *hexline);
|
|
uint8_t ptr_l = 0;
|
|
uint8_t ptr_h = 0;
|
|
bool PageIsReady = false;
|
|
bool firstrun = true;
|
|
bool EndOfFile = false;
|
|
uint8_t FlashPage[128];
|
|
uint8_t FlashPageIdx = 0;
|
|
uint8_t layoverBuffer[16];
|
|
uint8_t layoverIdx = 0;
|
|
uint8_t getByte(char *hexline, uint8_t idx);
|
|
};
|
|
|
|
SimpleHexParse::SimpleHexParse(void)
|
|
{
|
|
|
|
}
|
|
|
|
uint8_t SimpleHexParse::parseLine(char *hexline)
|
|
{
|
|
if (layoverIdx) {
|
|
memcpy(&FlashPage[0], &layoverBuffer[0], layoverIdx);
|
|
FlashPageIdx = layoverIdx;
|
|
layoverIdx = 0;
|
|
}
|
|
uint8_t len = getByte(hexline, 1);
|
|
uint8_t addr_h = getByte(hexline, 2);
|
|
uint8_t addr_l = getByte(hexline, 3);
|
|
uint8_t rectype = getByte(hexline, 4);
|
|
for (uint8_t idx = 0; idx < len; idx++) {
|
|
if (FlashPageIdx < 128) {
|
|
FlashPage[FlashPageIdx] = getByte(hexline, idx+5);
|
|
FlashPageIdx++;
|
|
} else { // We have layover bytes
|
|
layoverBuffer[layoverIdx] = getByte(hexline, idx+5);
|
|
layoverIdx++;
|
|
}
|
|
}
|
|
if (1 == rectype) {
|
|
EndOfFile = true;
|
|
while (FlashPageIdx < 128) {
|
|
FlashPage[FlashPageIdx] = 0xFF;
|
|
FlashPageIdx++;
|
|
}
|
|
}
|
|
if (FlashPageIdx == 128) {
|
|
if (firstrun) {
|
|
firstrun = false;
|
|
} else {
|
|
ptr_l += 0x40;
|
|
if (ptr_l == 0) {
|
|
ptr_l = 0;
|
|
ptr_h++;
|
|
}
|
|
}
|
|
firstrun = false;
|
|
PageIsReady = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint8_t SimpleHexParse::getByte(char* hexline, uint8_t idx)
|
|
{
|
|
char buff[3];
|
|
buff[3] = '\0';
|
|
memcpy(&buff, &hexline[(idx*2)-1], 2);
|
|
return strtol(buff, 0, 16);
|
|
}
|
|
|
|
/*
|
|
* End of embedded class SimpleHexParse
|
|
*/
|
|
|
|
struct TSLAVE {
|
|
uint32_t spi_hex_size = 0;
|
|
uint32_t spi_sector_counter = 0;
|
|
uint8_t spi_sector_cursor = 0;
|
|
bool type = false;
|
|
bool flashing = false;
|
|
bool SerialEnabled = false;
|
|
uint8_t waitstate = 0; // We use this so that features detection does not slow down other stuff on startup
|
|
} TSlave;
|
|
|
|
typedef union {
|
|
uint16_t data;
|
|
struct {
|
|
uint16_t json : 1;
|
|
uint16_t spare1 : 1;
|
|
uint16_t spare2 : 1;
|
|
uint16_t spare3 : 1;
|
|
uint16_t spare4 : 1;
|
|
uint16_t spare5 : 1;
|
|
uint16_t spare6 : 1;
|
|
uint16_t spare7 : 1;
|
|
uint16_t spare8 : 1;
|
|
uint16_t spare9 : 1;
|
|
uint16_t spare10 : 1;
|
|
uint16_t spare11 : 1;
|
|
uint16_t spare12 : 1;
|
|
uint16_t spare13 : 1;
|
|
uint16_t spare14 : 1;
|
|
uint16_t spare15 : 1;
|
|
};
|
|
} TSlaveFeatureCfg;
|
|
|
|
/*
|
|
* The structure below must remain 4 byte aligned to be compatible with
|
|
* Tasmota as master
|
|
*/
|
|
|
|
struct FEATURES {
|
|
uint32_t features_version;
|
|
TSlaveFeatureCfg features;
|
|
uint16_t spare4;
|
|
} TSlaveSettings;
|
|
|
|
struct COMMAND {
|
|
uint8_t command;
|
|
uint8_t parameter;
|
|
uint8_t unused2;
|
|
uint8_t unused3;
|
|
} Command;
|
|
|
|
TasmotaSerial *TasmotaSlave_Serial;
|
|
|
|
uint32_t TasmotaSlave_FlashStart(void)
|
|
{
|
|
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
|
|
}
|
|
|
|
uint8_t TasmotaSlave_UpdateInit(void)
|
|
{
|
|
TSlave.spi_hex_size = 0;
|
|
TSlave.spi_sector_counter = TasmotaSlave_FlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored
|
|
TSlave.spi_sector_cursor = 0;
|
|
return 0;
|
|
}
|
|
|
|
void TasmotaSlave_Reset(void)
|
|
{
|
|
if (TSlave.SerialEnabled) {
|
|
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], LOW);
|
|
delay(1);
|
|
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], HIGH);
|
|
delay(5);
|
|
}
|
|
}
|
|
|
|
uint8_t TasmotaSlave_waitForSerialData(int dataCount, int timeout)
|
|
{
|
|
int timer = 0;
|
|
while (timer < timeout) {
|
|
if (TasmotaSlave_Serial->available() >= dataCount) {
|
|
return 1;
|
|
}
|
|
delay(1);
|
|
timer++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint8_t TasmotaSlave_sendBytes(uint8_t* bytes, int count)
|
|
{
|
|
TasmotaSlave_Serial->write(bytes, count);
|
|
TasmotaSlave_waitForSerialData(2, 1000);
|
|
uint8_t sync = TasmotaSlave_Serial->read();
|
|
uint8_t ok = TasmotaSlave_Serial->read();
|
|
if ((sync == 0x14) && (ok == 0x10)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint8_t TasmotaSlave_execCmd(uint8_t cmd)
|
|
{
|
|
uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP };
|
|
return TasmotaSlave_sendBytes(bytes, 2);
|
|
}
|
|
|
|
uint8_t TasmotaSlave_execParam(uint8_t cmd, uint8_t* params, int count)
|
|
{
|
|
uint8_t bytes[32];
|
|
bytes[0] = cmd;
|
|
int i = 0;
|
|
while (i < count) {
|
|
bytes[i + 1] = params[i];
|
|
i++;
|
|
}
|
|
bytes[i + 1] = CONST_STK_CRC_EOP;
|
|
return TasmotaSlave_sendBytes(bytes, i + 2);
|
|
}
|
|
|
|
uint8_t TasmotaSlave_exitProgMode(void)
|
|
{
|
|
return TasmotaSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode
|
|
}
|
|
|
|
void TasmotaSlave_SetupFlash(void)
|
|
{
|
|
uint8_t ProgParams[] = {0x86, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0xff, 0xff, 0xff, 0xff, 0x00, 0x80, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00};
|
|
uint8_t ExtProgParams[] = {0x05, 0x04, 0xd7, 0xc2, 0x00};
|
|
TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_FLASH_SPEED);
|
|
if (TasmotaSlave_Serial->hardwareSerial()) {
|
|
ClaimSerial();
|
|
}
|
|
TasmotaSlave_Reset();
|
|
|
|
uint8_t timer = 0;
|
|
bool no_error = false;
|
|
while (200 > timer) {
|
|
if (TasmotaSlave_execCmd(CMND_STK_GET_SYNC)) {
|
|
timer = 200;
|
|
no_error = true;
|
|
}
|
|
delay(1);
|
|
}
|
|
|
|
if (no_error) {
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Found bootloader"));
|
|
} else {
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Bootloader could not be found"));
|
|
}
|
|
|
|
if (no_error) {
|
|
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams))) {
|
|
} else {
|
|
no_error = true;
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (1)"));
|
|
}
|
|
}
|
|
|
|
if (no_error) {
|
|
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams))) {
|
|
} else {
|
|
no_error = true;
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (2)"));
|
|
}
|
|
}
|
|
|
|
if (no_error) {
|
|
if (TasmotaSlave_execCmd(CMND_STK_ENTER_PROGMODE)) {
|
|
} else {
|
|
no_error = true;
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Failed to put bootloader into programming mode"));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
uint8_t TasmotaSlave_loadAddress(uint8_t adrHi, uint8_t adrLo)
|
|
{
|
|
uint8_t params[] = { adrLo, adrHi };
|
|
return TasmotaSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params));
|
|
}
|
|
|
|
void TasmotaSlave_FlashPage(uint8_t addr_h, uint8_t addr_l, uint8_t* data)
|
|
{
|
|
uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46};
|
|
TasmotaSlave_loadAddress(addr_h, addr_l);
|
|
TasmotaSlave_Serial->write(Header, 4);
|
|
for (int i = 0; i < 128; i++) {
|
|
TasmotaSlave_Serial->write(data[i]);
|
|
}
|
|
TasmotaSlave_Serial->write(CONST_STK_CRC_EOP);
|
|
TasmotaSlave_waitForSerialData(2, 1000);
|
|
TasmotaSlave_Serial->read();
|
|
TasmotaSlave_Serial->read();
|
|
}
|
|
|
|
void TasmotaSlave_Flash(void)
|
|
{
|
|
bool reading = true;
|
|
uint32_t read = 0;
|
|
uint32_t processed = 0;
|
|
char thishexline[50];
|
|
uint8_t position = 0;
|
|
char* flash_buffer;
|
|
SimpleHexParse hexParse = SimpleHexParse();
|
|
|
|
TasmotaSlave_SetupFlash();
|
|
|
|
flash_buffer = new char[SPI_FLASH_SEC_SIZE];
|
|
uint32_t flash_start = TasmotaSlave_FlashStart() * SPI_FLASH_SEC_SIZE;
|
|
while (reading) {
|
|
ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE);
|
|
read = read + SPI_FLASH_SEC_SIZE;
|
|
if (read >= TSlave.spi_hex_size) {
|
|
reading = false;
|
|
}
|
|
for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) {
|
|
processed++;
|
|
if ((processed <= TSlave.spi_hex_size) && (!hexParse.EndOfFile)) {
|
|
if (':' == flash_buffer[ca]) {
|
|
position = 0;
|
|
}
|
|
if (0x0D == flash_buffer[ca]) {
|
|
thishexline[position] = 0;
|
|
hexParse.parseLine(thishexline);
|
|
if (hexParse.PageIsReady) {
|
|
TasmotaSlave_FlashPage(hexParse.ptr_h, hexParse.ptr_l, hexParse.FlashPage);
|
|
hexParse.PageIsReady = false;
|
|
hexParse.FlashPageIdx = 0;
|
|
}
|
|
} else {
|
|
if (0x0A != flash_buffer[ca]) {
|
|
thishexline[position] = flash_buffer[ca];
|
|
position++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
TasmotaSlave_exitProgMode();
|
|
TSlave.flashing = false;
|
|
restart_flag = 2;
|
|
}
|
|
|
|
void TasmotaSlave_SetFlagFlashing(bool value)
|
|
{
|
|
TSlave.flashing = value;
|
|
}
|
|
|
|
bool TasmotaSlave_GetFlagFlashing(void)
|
|
{
|
|
return TSlave.flashing;
|
|
}
|
|
|
|
void TasmotaSlave_WriteBuffer(uint8_t *buf, size_t size)
|
|
{
|
|
if (0 == TSlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first
|
|
ESP.flashEraseSector(TSlave.spi_sector_counter);
|
|
}
|
|
TSlave.spi_sector_cursor++;
|
|
ESP.flashWrite((TSlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((TSlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size);
|
|
TSlave.spi_hex_size = TSlave.spi_hex_size + size;
|
|
if (2 == TSlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase
|
|
TSlave.spi_sector_cursor = 0;
|
|
TSlave.spi_sector_counter++;
|
|
}
|
|
}
|
|
|
|
void TasmotaSlave_Init(void)
|
|
{
|
|
if (TSlave.type) {
|
|
return;
|
|
}
|
|
if (10 > TSlave.waitstate) {
|
|
TSlave.waitstate++;
|
|
return;
|
|
}
|
|
if (!TSlave.SerialEnabled) {
|
|
if ((pin[GPIO_TASMOTASLAVE_RXD] < 99) && (pin[GPIO_TASMOTASLAVE_TXD] < 99) && (pin[GPIO_TASMOTASLAVE_RST] < 99)) {
|
|
TasmotaSlave_Serial = new TasmotaSerial(pin[GPIO_TASMOTASLAVE_RXD], pin[GPIO_TASMOTASLAVE_TXD], 1, 0, 200);
|
|
if (TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_SERIAL_SPEED)) {
|
|
if (TasmotaSlave_Serial->hardwareSerial()) {
|
|
ClaimSerial();
|
|
}
|
|
pinMode(pin[GPIO_TASMOTASLAVE_RST], OUTPUT);
|
|
TasmotaSlave_Reset();
|
|
TSlave.SerialEnabled = true;
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Enabled"));
|
|
}
|
|
}
|
|
}
|
|
if (TSlave.SerialEnabled) { // All go for hardware now we need to detect features if there are any
|
|
TasmotaSlave_sendCmnd(CMND_FEATURES, 0);
|
|
char buffer[32];
|
|
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer));
|
|
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer));
|
|
memcpy(&TSlaveSettings, &buffer, sizeof(TSlaveSettings));
|
|
if (20191026 <= TSlaveSettings.features_version) {
|
|
TSlave.type = true;
|
|
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u"), TSlaveSettings.features_version);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TasmotaSlave_Show(void)
|
|
{
|
|
if ((TSlave.type) && (TSlaveSettings.features.json)) {
|
|
char buffer[100];
|
|
TasmotaSlave_sendCmnd(CMND_JSON, 0);
|
|
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)-1);
|
|
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)-1);
|
|
buffer[len] = '\0';
|
|
ResponseAppend_P(PSTR(",\"TasmotaSlave\":%s"), buffer);
|
|
}
|
|
}
|
|
|
|
void TasmotaSlave_sendCmnd(uint8_t cmnd, uint8_t param)
|
|
{
|
|
Command.command = cmnd;
|
|
Command.parameter = param;
|
|
char buffer[sizeof(Command)+2];
|
|
buffer[0] = CMND_START;
|
|
memcpy(&buffer[1], &Command, sizeof(Command));
|
|
buffer[sizeof(Command)+1] = CMND_END;
|
|
for (uint8_t ca = 0; ca < sizeof(buffer); ca++) {
|
|
TasmotaSlave_Serial->write(buffer[ca]);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xdrv31(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
switch (function) {
|
|
case FUNC_EVERY_SECOND:
|
|
TasmotaSlave_Init();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
TasmotaSlave_Show();
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_TASMOTA_SLAVE
|