i2cdriver/python/EDS.py

263 lines
7.7 KiB
Python

"""
Drivers for electricdollarstore I2C parts
"""
import struct
import time
import datetime
class Dig2:
""" DIG2 is a 2-digit 7-segment LED display """
def __init__(self, i2, a = 0x14):
self.i2 = i2
self.a = a
def raw(self, b0, b1):
""" Set all 8 segments from the bytes b0 and b1 """
self.i2.regwr(self.a, 0, struct.pack("BB", b0, b1))
def hex(self, b):
""" Display a hex number 0-0xff """
self.i2.regwr(self.a, 1, b)
def dec(self, b):
""" Display a decimal number 00-99 """
self.i2.regwr(self.a, 2, b)
def dp(self, p0, p1):
""" Set the state the decimal point indicators """
self.i2.regwr(self.a, 3, (p1 << 1) | p0)
def brightness(self, b):
""" Set the brightness from 0 (off) to 255 (maximum) """
self.i2.regwr(self.a, 4, b)
class LED:
""" LED is an RGB LED """
def __init__(self, i2, a = 0x08):
self.i2 = i2
self.a = a
def rgb(self, r, g, b, t = 0):
"""
Set the color to (r,g,b). Each is a byte 0-255.
If t is nonzero, the change happens over t/30 seconds.
For example if t is 15 the color fades over a half-second.
"""
if t == 0:
self.i2.start(self.a, 0)
self.i2.regwr(self.a, 0, r, g, b)
else:
self.i2.start(self.a, 0)
self.i2.regwr(self.a, 1, r, g, b, t)
def hex(self, hhh, t = 0):
"""
Set the color to hhh, a 24-bit RGB color.
If t is nonzero, the change happens over t/30 seconds.
For example if t is 15 the color fades over a half-second.
"""
r = (hhh >> 16) & 0xff
g = (hhh >> 8) & 0xff
b = hhh & 0xff
self.rgb(r, g, b, t)
class Pot:
""" POT is an analog knob potentiometer """
def __init__(self, i2, a = 0x28):
self.i2 = i2
self.a = a
def raw(self):
"""
Return the current knob rotation as a 16-bit integer.
"""
return self.i2.regrd(self.a, 0, "H")
def rd(self, r):
"""
Return the current knob rotation, scaled to the range 0 .. r
inclusive. For example rd(100) returns a value in the range 0 to 100.
"""
return self.i2.regrd(self.a, r)
class Beep:
""" BEEP is a beeper """
def __init__(self, i2, a = 0x30):
self.i2 = i2
self.a = a
def beep(self, dur, note):
"""
Play a note.
dur is the duration in milliseconds, 0-255.
note is a MIDI note in the range 21-127 inclusive.
"""
self.i2.regwr(self.a, dur, note)
class Remote:
""" REMOTE is a NEC IR code receiver / decoder """
def __init__(self, i2, a = 0x60):
self.i2 = i2
self.a = a
def key(self):
"""
For the electricdollarstore IR transmitter.
If there is a code in the queue, return its character code.
The layout of the remote is
p c n
< > ' '
- + =
0 % &
1 2 3
4 5 6
7 8 9
If there is no IR code in the queue, return None.
"""
r = self.i2.regrd(self.a, 0)
if r != 0:
return chr(r)
def raw(self):
"""
If there is a code in the queue, return a tuple containing the four-byte code,
and a timestamp.
If there is no IR code in the queue, return None.
"""
r = self.i2.regrd(self.a, 1, "4BH")
if r[:4] != (0xff, 0xff, 0xff, 0xff):
age_in_ms = r[4]
return (r[:4], time.time() - age_in_ms * .001)
else:
return None
class Temp:
""" TEMP is a LM75B temperature sesnor """
def __init__(self, i2, a = 0x48):
self.i2 = i2
self.a = a
def reg(self, r):
return self.i2.regrd(self.a, r, ">h")
def read(self):
""" Return the current temperature in Celsius """
return (self.reg(0) >> 5) * 0.125
class EPROM:
""" EPROM is a CAT24C512 512 Kbit (64 Kbyte) flash memory """
def __init__(self, i2, a = 0x50):
self.i2 = i2
self.a = a
def write(self, addr, data):
""" Write data to EPROM, starting at address addr """
for i in range(0, len(data), 128):
self.i2.start(self.a, 0)
self.i2.write(struct.pack(">H", addr + i))
self.i2.write(data[i:i + 128])
self.i2.stop()
while self.i2.start(self.a, 0) == False:
pass
def read(self, addr, n):
""" Read n bytes from the EPROM, starting at address addr """
self.i2.start(self.a, 0)
self.i2.write(struct.pack(">H", addr))
self.i2.start(self.a, 1)
r = self.i2.read(n)
self.i2.stop()
return r
self.i2.stop()
class Clock:
""" CLOCK is a HT1382 I2C/3-Wire Real Time Clock with a 32 kHz crystal """
def __init__(self, i2, a = 0x68):
self.i2 = i2
self.a = a
def set(self, t = None):
if t is None:
t = datetime.datetime.now()
def bcd(x):
return (x % 10) + 16 * (x // 10)
self.i2.regwr(self.a, 7, 0)
self.i2.regwr(self.a, 6, bcd(t.year % 100))
self.i2.regwr(self.a, 5, 1 + t.weekday())
self.i2.regwr(self.a, 4, bcd(t.month))
self.i2.regwr(self.a, 3, bcd(t.day))
self.i2.regwr(self.a, 2, 0x80 | bcd(t.hour)) # use 24-hour mode
self.i2.regwr(self.a, 1, bcd(t.minute))
self.i2.regwr(self.a, 0, bcd(t.second))
def read(self):
self.i2.start(self.a, 0)
self.i2.write([0])
self.i2.stop()
self.i2.start(self.a, 1)
(ss,mm,hh,dd,MM,ww,yy) = (struct.unpack("7B", self.i2.read(7)))
self.i2.stop()
def dec(x):
return (x % 16) + 10 * (x // 16)
return datetime.datetime(
2000 + dec(yy),
dec(MM),
dec(dd),
dec(hh & 0x7f),
dec(mm),
dec(ss))
def dump(self):
self.i2.start(self.a, 0)
self.i2.write([0])
self.i2.stop()
self.i2.start(self.a, 1)
print(list(self.i2.read(16)))
self.i2.stop()
class Magnet:
""" MAGNET is an ST LIS3MDL 3-axis magnetometer """
def __init__(self, i2, a = 0x1c):
self.i2 = i2
self.a = a
self.i2.regwr(self.a, 0x22, 0) # CTRL_REG3 operating mode 0: continuous conversion
def rd(self):
""" Read the measurement STATUS_REG and OUT_X,Y,Z """
return self.i2.regrd(self.a, 0x27, "<B3h")
def measurement(self):
""" Wait for a new field reading, return the (x,y,z) """
while True:
(status, x, y, z) = self.rd()
if status & 8:
return (x, y, z)
class Accel:
""" ACCEL is a Richtek RT3000C 3-Axis Digital Accelerometer """
def __init__(self, i2, a = 0x19):
self.i2 = i2
self.a = a
print(bin(i2.regrd(self.a, 0xf)))
i2.regwr(self.a, 0x20, 0b01000111) # CTRL_REG1: 50 Hz, enable X,Y,Z
i2.regwr(self.a, 0x23, 0b00000000) # CTRL_REG4: High resolution mode
def measurement(self):
""" Wait for a new reading, return the (x,y,z) acceleration in g """
# Note that the RT3000A does not support multibyte
# reads. So must read the data one byte at a time.
while True:
STS_REG = self.i2.regrd(self.a, 0x27)
if STS_REG & 8:
regs = [self.i2.regrd(self.a, i) for i in range(0x28, 0x2e)]
xyz = struct.unpack("<3h", struct.pack("6B", *regs))
return tuple([c / 16384. for c in xyz])