mirror of https://github.com/macssh/macssh.git
138 lines
4.3 KiB
C
138 lines
4.3 KiB
C
|
/* mpn_divrem_n -- Karatsuba division in 2*K(n) limb operations
|
||
|
|
||
|
Copyright (C) 1999-2000 PolKA project, Inria Lorraine and Loria
|
||
|
|
||
|
This file is part of the MPFR Library.
|
||
|
|
||
|
The MPFR Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Library General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
The MPFR Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
|
||
|
License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Library General Public License
|
||
|
along with the MPFR Library; see the file COPYING.LIB. If not, write to
|
||
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||
|
MA 02111-1307, USA. */
|
||
|
|
||
|
/*
|
||
|
[1] Fast Recursive Division, by Christoph Burnikel and Joachim Ziegler,
|
||
|
Technical report MPI-I-98-1-022, october 1998,
|
||
|
cf http://www.mpi-sb.mpg.de/~ziegler/TechRep.ps.gz.
|
||
|
Implemented by Paul Zimmermann, 1999.
|
||
|
*/
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "mpfr.h"
|
||
|
|
||
|
extern void mpn_divrem_n2 (mp_limb_t *, mp_limb_t *, mp_limb_t *, mp_size_t, mp_limb_t *);
|
||
|
extern void mpn_divrem_3by2 (mp_limb_t *, mp_limb_t *, mp_limb_t *, mp_size_t, mp_limb_t *);
|
||
|
|
||
|
/* mpn_divrem_n(n) calls 2*mul(n/2)+2*div(n/2), thus to be faster then
|
||
|
div(n)=4*div(n/2), we need mul(n/2) to be faster than the classic way,
|
||
|
i.e. n/2 >= KARATSUBA_MUL_THRESHOLD */
|
||
|
|
||
|
#define DIV_LIMIT (7*KARATSUBA_MUL_THRESHOLD)
|
||
|
|
||
|
static void mpn_decr(mp_limb_t *Q)
|
||
|
{
|
||
|
while ((*Q++)-- == 0);
|
||
|
}
|
||
|
|
||
|
/* implements algorithm of page 8 in [1]: divides (A,2n) by (B,n) and puts the
|
||
|
quotient in (Q,n), the remainder in (A,n).
|
||
|
Returns most significant limb of the quotient, which is 0 or 1.
|
||
|
*/
|
||
|
mp_limb_t
|
||
|
mpn_divrem_n(mp_limb_t *Q, mp_limb_t *A, mp_limb_t *B, mp_size_t n)
|
||
|
{
|
||
|
if (n<DIV_LIMIT) return mpn_divrem(Q, 0, A, 2*n, B, n);
|
||
|
else {
|
||
|
mp_limb_t cc=0;
|
||
|
if (mpn_cmp(A+n, B, n)>=0) {
|
||
|
cc=1;
|
||
|
mpn_sub_n(A+n, A+n, B, n);
|
||
|
}
|
||
|
if (n%2) {
|
||
|
/* divide (2n-2) most significant limbs from A by those (n-1) from B */
|
||
|
mpn_divrem_n(Q+1, A+2, B+1, n-1);
|
||
|
/* now (Q+1, n-1) contains the quotient of (A+2,2n-2) by (B+1,n-1)
|
||
|
and (A+2, n-1) contains the remainder */
|
||
|
if (mpn_sub_1(A+n, A+n, 1, mpn_submul_1(A+1, Q+1, n-1, B[0]))) {
|
||
|
/* quotient two large */
|
||
|
mpn_decr(Q+1);
|
||
|
if (mpn_add_n(A+1, A+1, B, n)==0) {
|
||
|
mpn_decr(Q+1); mpn_add_n(A+1, A+1, B, n);
|
||
|
}
|
||
|
}
|
||
|
/* now divide (A,n+1) by (B,n) */
|
||
|
mpn_divrem(Q, 0, A, n+1, B, n);
|
||
|
}
|
||
|
else {
|
||
|
mp_limb_t *tmp; int n2=n/2;
|
||
|
TMP_DECL (marker);
|
||
|
|
||
|
TMP_MARK (marker);
|
||
|
tmp = (mp_limb_t*) TMP_ALLOC(n*sizeof(mp_limb_t));
|
||
|
mpn_divrem_3by2(Q+n2, A+n2, B, n2, tmp);
|
||
|
mpn_divrem_3by2(Q, A, B, n2, tmp);
|
||
|
TMP_FREE (marker);
|
||
|
}
|
||
|
return cc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* inner procedure, with no memory allocation
|
||
|
assumes mpn_cmp(A+n, B, n) < 0
|
||
|
*/
|
||
|
void mpn_divrem_n2(mp_limb_t *Q, mp_limb_t *A, mp_limb_t *B, mp_size_t n,
|
||
|
mp_limb_t *tmp)
|
||
|
{
|
||
|
if (n%2) {
|
||
|
/* divide (2n-2) most significant limbs from A by those (n-1) from B */
|
||
|
mpn_divrem_n2(Q+1, A+2, B+1, n-1, tmp);
|
||
|
/* now (Q+1, n-1) contains the quotient of (A+2,2n-2) by (B+1,n-1)
|
||
|
and (A+2, n-1) contains the remainder */
|
||
|
if (mpn_sub_1(A+n, A+n, 1, mpn_submul_1(A+1, Q+1, n-1, B[0]))) {
|
||
|
/* quotient two large */
|
||
|
mpn_decr(Q+1);
|
||
|
if (mpn_add_n(A+1, A+1, B, n)==0) { /* still too large */
|
||
|
mpn_decr(Q+1); mpn_add_n(A+1, A+1, B, n);
|
||
|
}
|
||
|
}
|
||
|
/* now divide (A,n+1) by (B,n) */
|
||
|
mpn_divrem(Q, 0, A, n+1, B, n);
|
||
|
}
|
||
|
else {
|
||
|
int n2=n/2;
|
||
|
mpn_divrem_3by2(Q+n2, A+n2, B, n2, tmp);
|
||
|
mpn_divrem_3by2(Q, A, B, n2, tmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* divides (A,3n) by (B,2n) and puts the quotient in (Q,n),
|
||
|
the remainder in (A,2n) */
|
||
|
void
|
||
|
mpn_divrem_3by2(mp_limb_t *Q, mp_limb_t *A, mp_limb_t *B,
|
||
|
mp_size_t n, mp_limb_t *tmp)
|
||
|
{
|
||
|
int twon = n+n;
|
||
|
|
||
|
if (n<DIV_LIMIT) mpn_divrem(Q, 0, A+n, twon, B+n, n);
|
||
|
else mpn_divrem_n2(Q, A+n, B+n, n, tmp);
|
||
|
/* q=(Q,n), c=(A+n,n) with the notations of [1] */
|
||
|
mpn_mul_n(tmp, Q, B, n);
|
||
|
if (mpn_sub_n(A, A, tmp, twon)) /* R=(A,2n) */ {
|
||
|
mpn_decr(Q);
|
||
|
if (mpn_add_n(A, A, B, twon)==0) { /* Q still too large */
|
||
|
mpn_decr(Q); mpn_add_n(A, A, B, twon);
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|