mirror of https://github.com/macssh/macssh.git
166 lines
4.9 KiB
C
166 lines
4.9 KiB
C
|
/* double mpq_get_d (mpq_t src) -- Return the double approximation to SRC.
|
||
|
|
||
|
Copyright (C) 1995, 1996 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of the GNU MP Library.
|
||
|
|
||
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
|
License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||
|
MA 02111-1307, USA. */
|
||
|
|
||
|
#include "gmp.h"
|
||
|
#include "gmp-impl.h"
|
||
|
#include "longlong.h"
|
||
|
|
||
|
/* Algorithm:
|
||
|
1. Develop >= n bits of src.num / src.den, where n is the number of bits
|
||
|
in a double. This (partial) division will use all bits from the
|
||
|
denominator.
|
||
|
2. Use the remainder to determine how to round the result.
|
||
|
3. Assign the integral result to a temporary double.
|
||
|
4. Scale the temporary double, and return the result.
|
||
|
|
||
|
An alternative algorithm, that would be faster:
|
||
|
0. Let n be somewhat larger than the number of significant bits in a double.
|
||
|
1. Extract the most significant n bits of the denominator, and an equal
|
||
|
number of bits from the numerator.
|
||
|
2. Interpret the extracted numbers as integers, call them a and b
|
||
|
respectively, and develop n bits of the fractions ((a + 1) / b) and
|
||
|
(a / (b + 1)) using mpn_divrem.
|
||
|
3. If the computed values are identical UP TO THE POSITION WE CARE ABOUT,
|
||
|
we are done. If they are different, repeat the algorithm from step 1,
|
||
|
but first let n = n * 2.
|
||
|
4. If we end up using all bits from the numerator and denominator, fall
|
||
|
back to the first algorithm above.
|
||
|
5. Just to make life harder, The computation of a + 1 and b + 1 above
|
||
|
might give carry-out... Needs special handling. It might work to
|
||
|
subtract 1 in both cases instead.
|
||
|
*/
|
||
|
|
||
|
double
|
||
|
#if __STDC__
|
||
|
mpq_get_d (const MP_RAT *src)
|
||
|
#else
|
||
|
mpq_get_d (src)
|
||
|
const MP_RAT *src;
|
||
|
#endif
|
||
|
{
|
||
|
mp_ptr np, dp;
|
||
|
mp_ptr rp;
|
||
|
mp_size_t nsize = src->_mp_num._mp_size;
|
||
|
mp_size_t dsize = src->_mp_den._mp_size;
|
||
|
mp_size_t qsize, rsize;
|
||
|
mp_size_t sign_quotient = nsize ^ dsize;
|
||
|
unsigned normalization_steps;
|
||
|
mp_limb_t qlimb;
|
||
|
#define N_QLIMBS (1 + (sizeof (double) + BYTES_PER_MP_LIMB-1) / BYTES_PER_MP_LIMB)
|
||
|
mp_limb_t qarr[N_QLIMBS + 1];
|
||
|
mp_ptr qp = qarr;
|
||
|
TMP_DECL (marker);
|
||
|
|
||
|
if (nsize == 0)
|
||
|
return 0.0;
|
||
|
|
||
|
TMP_MARK (marker);
|
||
|
nsize = ABS (nsize);
|
||
|
dsize = ABS (dsize);
|
||
|
np = src->_mp_num._mp_d;
|
||
|
dp = src->_mp_den._mp_d;
|
||
|
|
||
|
rsize = dsize + N_QLIMBS;
|
||
|
rp = (mp_ptr) TMP_ALLOC ((rsize + 1) * BYTES_PER_MP_LIMB);
|
||
|
|
||
|
count_leading_zeros (normalization_steps, dp[dsize - 1]);
|
||
|
|
||
|
/* Normalize the denominator, i.e. make its most significant bit set by
|
||
|
shifting it NORMALIZATION_STEPS bits to the left. Also shift the
|
||
|
numerator the same number of steps (to keep the quotient the same!). */
|
||
|
if (normalization_steps != 0)
|
||
|
{
|
||
|
mp_ptr tp;
|
||
|
mp_limb_t nlimb;
|
||
|
|
||
|
/* Shift up the denominator setting the most significant bit of
|
||
|
the most significant limb. Use temporary storage not to clobber
|
||
|
the original contents of the denominator. */
|
||
|
tp = (mp_ptr) TMP_ALLOC (dsize * BYTES_PER_MP_LIMB);
|
||
|
mpn_lshift (tp, dp, dsize, normalization_steps);
|
||
|
dp = tp;
|
||
|
|
||
|
if (rsize > nsize)
|
||
|
{
|
||
|
MPN_ZERO (rp, rsize - nsize);
|
||
|
nlimb = mpn_lshift (rp + (rsize - nsize),
|
||
|
np, nsize, normalization_steps);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
nlimb = mpn_lshift (rp, np + (nsize - rsize),
|
||
|
rsize, normalization_steps);
|
||
|
}
|
||
|
if (nlimb != 0)
|
||
|
{
|
||
|
rp[rsize] = nlimb;
|
||
|
rsize++;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (rsize > nsize)
|
||
|
{
|
||
|
MPN_ZERO (rp, rsize - nsize);
|
||
|
MPN_COPY (rp + (rsize - nsize), np, nsize);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
MPN_COPY (rp, np + (nsize - rsize), rsize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
qlimb = mpn_divmod (qp, rp, rsize, dp, dsize);
|
||
|
qsize = rsize - dsize;
|
||
|
if (qlimb)
|
||
|
{
|
||
|
qp[qsize] = qlimb;
|
||
|
qsize++;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
double res;
|
||
|
mp_size_t i;
|
||
|
int scale = nsize - dsize - N_QLIMBS;
|
||
|
|
||
|
#if defined (__vax__)
|
||
|
/* Ignore excess quotient limbs. This is necessary on a vax
|
||
|
with its small double exponent, since we'd otherwise get
|
||
|
exponent overflow while forming RES. */
|
||
|
if (qsize > N_QLIMBS)
|
||
|
{
|
||
|
qp += qsize - N_QLIMBS;
|
||
|
scale += qsize - N_QLIMBS;
|
||
|
qsize = N_QLIMBS;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
res = qp[qsize - 1];
|
||
|
for (i = qsize - 2; i >= 0; i--)
|
||
|
res = res * MP_BASE_AS_DOUBLE + qp[i];
|
||
|
|
||
|
res = __gmp_scale2 (res, BITS_PER_MP_LIMB * scale);
|
||
|
|
||
|
TMP_FREE (marker);
|
||
|
return sign_quotient >= 0 ? res : -res;
|
||
|
}
|
||
|
}
|