mirror of https://github.com/macssh/macssh.git
773 lines
21 KiB
C
Executable File
773 lines
21 KiB
C
Executable File
/* An implementation in GMP of Scho"nhage's fast multiplication algorithm
|
|
modulo 2^N+1, by Paul Zimmermann, INRIA Lorraine, February 1998.
|
|
|
|
THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND THE FUNCTIONS HAVE
|
|
MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED
|
|
INTERFACES. IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN
|
|
A FUTURE GNU MP RELEASE.
|
|
|
|
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA. */
|
|
|
|
|
|
/* References:
|
|
|
|
Schnelle Multiplikation grosser Zahlen, by Arnold Scho"nhage and Volker
|
|
Strassen, Computing 7, p. 281-292, 1971.
|
|
|
|
Asymptotically fast algorithms for the numerical multiplication
|
|
and division of polynomials with complex coefficients, by Arnold Scho"nhage,
|
|
Computer Algebra, EUROCAM'82, LNCS 144, p. 3-15, 1982.
|
|
|
|
Tapes versus Pointers, a study in implementing fast algorithms,
|
|
by Arnold Scho"nhage, Bulletin of the EATCS, 30, p. 23-32, 1986.
|
|
|
|
See also http://www.loria.fr/~zimmerma/bignum
|
|
|
|
|
|
Future:
|
|
|
|
K==2 isn't needed in the current uses of this code and the bits specific
|
|
for that could be dropped.
|
|
|
|
It might be possible to avoid a small number of MPN_COPYs by using a
|
|
rotating temporary or two.
|
|
|
|
Multiplications of unequal sized operands can be done with this code, but
|
|
it needs a tighter test for identifying squaring (same sizes as well as
|
|
same pointers). */
|
|
|
|
|
|
#include <stdio.h>
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
|
|
|
|
/* Change this to "#define TRACE(x) x" for some traces. */
|
|
#define TRACE(x)
|
|
|
|
|
|
|
|
FFT_TABLE_ATTRS mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE] = {
|
|
FFT_MUL_TABLE,
|
|
FFT_SQR_TABLE
|
|
};
|
|
|
|
|
|
static void mpn_mul_fft_internal
|
|
_PROTO ((mp_limb_t *op, mp_srcptr n, mp_srcptr m, mp_size_t pl,
|
|
int k, int K,
|
|
mp_limb_t **Ap, mp_limb_t **Bp,
|
|
mp_limb_t *A, mp_limb_t *B,
|
|
mp_size_t nprime, mp_size_t l, mp_size_t Mp, int **_fft_l,
|
|
mp_limb_t *T, int rec));
|
|
|
|
|
|
/* Find the best k to use for a mod 2^(n*BITS_PER_MP_LIMB)+1 FFT.
|
|
sqr==0 if for a multiply, sqr==1 for a square */
|
|
int
|
|
#if __STDC__
|
|
mpn_fft_best_k (mp_size_t n, int sqr)
|
|
#else
|
|
mpn_fft_best_k (n, sqr)
|
|
mp_size_t n;
|
|
int sqr;
|
|
#endif
|
|
{
|
|
mp_size_t t;
|
|
int i;
|
|
|
|
for (i = 0; mpn_fft_table[sqr][i] != 0; i++)
|
|
if (n < mpn_fft_table[sqr][i])
|
|
return i + FFT_FIRST_K;
|
|
|
|
/* treat 4*last as one further entry */
|
|
if (i == 0 || n < 4*mpn_fft_table[sqr][i-1])
|
|
return i + FFT_FIRST_K;
|
|
else
|
|
return i + FFT_FIRST_K + 1;
|
|
}
|
|
|
|
|
|
/* Returns smallest possible number of limbs >= pl for a fft of size 2^k.
|
|
FIXME: Is this simply pl rounded up to the next multiple of 2^k ? */
|
|
|
|
mp_size_t
|
|
#if __STDC__
|
|
mpn_fft_next_size (mp_size_t pl, int k)
|
|
#else
|
|
mpn_fft_next_size (pl, k)
|
|
mp_size_t pl;
|
|
int k;
|
|
#endif
|
|
{
|
|
mp_size_t N, M;
|
|
int K;
|
|
|
|
/* if (k==0) k = mpn_fft_best_k (pl, sqr); */
|
|
N = pl*BITS_PER_MP_LIMB;
|
|
K = 1<<k;
|
|
if (N%K) N=(N/K+1)*K;
|
|
M = N/K;
|
|
if (M%BITS_PER_MP_LIMB) N=((M/BITS_PER_MP_LIMB)+1)*BITS_PER_MP_LIMB*K;
|
|
return (N/BITS_PER_MP_LIMB);
|
|
}
|
|
|
|
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_initl(int **l, int k)
|
|
#else
|
|
mpn_fft_initl(l, k)
|
|
int **l;
|
|
int k;
|
|
#endif
|
|
{
|
|
int i,j,K;
|
|
|
|
l[0][0] = 0;
|
|
for (i=1,K=2;i<=k;i++,K*=2) {
|
|
for (j=0;j<K/2;j++) {
|
|
l[i][j] = 2*l[i-1][j];
|
|
l[i][K/2+j] = 1+l[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* a <- -a mod 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_neg_modF(mp_limb_t *ap, mp_size_t n)
|
|
#else
|
|
mpn_fft_neg_modF(ap, n)
|
|
mp_limb_t *ap;
|
|
mp_size_t n;
|
|
#endif
|
|
{
|
|
mp_limb_t c;
|
|
|
|
c = ap[n]+2;
|
|
mpn_com_n (ap, ap, n);
|
|
ap[n]=0; mpn_incr_u(ap, c);
|
|
}
|
|
|
|
|
|
/* a <- a*2^e mod 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_mul_2exp_modF(mp_limb_t *ap, int e, mp_size_t n, mp_limb_t *tp)
|
|
#else
|
|
mpn_fft_mul_2exp_modF(ap, e, n, tp)
|
|
mp_limb_t *ap;
|
|
int e;
|
|
mp_size_t n;
|
|
mp_limb_t *tp;
|
|
#endif
|
|
{
|
|
int d, sh, i; mp_limb_t cc;
|
|
|
|
d = e%(n*BITS_PER_MP_LIMB); /* 2^e = (+/-) 2^d */
|
|
sh = d % BITS_PER_MP_LIMB;
|
|
if (sh) mpn_lshift(tp, ap, n+1, sh); /* no carry here */
|
|
else MPN_COPY(tp, ap, n+1);
|
|
d /= BITS_PER_MP_LIMB; /* now shift of d limbs to the left */
|
|
if (d) {
|
|
/* ap[d..n-1] = tp[0..n-d-1], ap[0..d-1] = -tp[n-d..n-1] */
|
|
/* mpn_xor would be more efficient here */
|
|
for (i=d-1;i>=0;i--) ap[i] = ~tp[n-d+i];
|
|
cc = 1-mpn_add_1(ap, ap, d, 1);
|
|
if (cc) cc=mpn_sub_1(ap+d, tp, n-d, 1);
|
|
else MPN_COPY(ap+d, tp, n-d);
|
|
if (cc+=mpn_sub_1(ap+d, ap+d, n-d, tp[n]))
|
|
ap[n]=mpn_add_1(ap, ap, n, cc);
|
|
else ap[n]=0;
|
|
}
|
|
else if ((ap[n]=mpn_sub_1(ap, tp, n, tp[n]))) {
|
|
ap[n]=mpn_add_1(ap, ap, n, 1);
|
|
}
|
|
if ((e/(n*BITS_PER_MP_LIMB))%2) mpn_fft_neg_modF(ap, n);
|
|
}
|
|
|
|
|
|
/* a <- a+b mod 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_add_modF (mp_limb_t *ap, mp_limb_t *bp, int n)
|
|
#else
|
|
mpn_fft_add_modF (ap, bp, n)
|
|
mp_limb_t *ap,*bp;
|
|
int n;
|
|
#endif
|
|
{
|
|
mp_limb_t c;
|
|
|
|
c = ap[n] + bp[n] + mpn_add_n(ap, ap, bp, n);
|
|
if (c>1) c -= 1+mpn_sub_1(ap,ap,n,1);
|
|
ap[n]=c;
|
|
}
|
|
|
|
|
|
/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
|
|
N=n*BITS_PER_MP_LIMB
|
|
2^omega is a primitive root mod 2^N+1
|
|
output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */
|
|
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_fft_sqr (mp_limb_t **Ap, mp_size_t K, int **ll,
|
|
mp_size_t omega, mp_size_t n, mp_size_t inc, mp_limb_t *tp)
|
|
#else
|
|
mpn_fft_fft_sqr(Ap,K,ll,omega,n,inc,tp)
|
|
mp_limb_t **Ap,*tp;
|
|
mp_size_t K,omega,n,inc;
|
|
int **ll;
|
|
#endif
|
|
{
|
|
if (K==2) {
|
|
#ifdef ADDSUB
|
|
if (mpn_addsub_n(Ap[0], Ap[inc], Ap[0], Ap[inc], n+1) & 1)
|
|
#else
|
|
MPN_COPY(tp, Ap[0], n+1);
|
|
mpn_add_n(Ap[0], Ap[0], Ap[inc],n+1);
|
|
if (mpn_sub_n(Ap[inc], tp, Ap[inc],n+1))
|
|
#endif
|
|
Ap[inc][n] = mpn_add_1(Ap[inc], Ap[inc], n, 1);
|
|
}
|
|
else {
|
|
int j, inc2=2*inc;
|
|
int *lk = *ll;
|
|
mp_limb_t *tmp;
|
|
TMP_DECL(marker);
|
|
|
|
TMP_MARK(marker);
|
|
tmp = TMP_ALLOC_LIMBS (n+1);
|
|
mpn_fft_fft_sqr(Ap, K/2,ll-1,2*omega,n,inc2, tp);
|
|
mpn_fft_fft_sqr(Ap+inc, K/2,ll-1,2*omega,n,inc2, tp);
|
|
/* A[2*j*inc] <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
|
|
A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
|
|
for (j=0;j<K/2;j++,lk+=2,Ap+=2*inc) {
|
|
MPN_COPY(tp, Ap[inc], n+1);
|
|
mpn_fft_mul_2exp_modF(Ap[inc], lk[1]*omega, n, tmp);
|
|
mpn_fft_add_modF(Ap[inc], Ap[0], n);
|
|
mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
|
|
mpn_fft_add_modF(Ap[0], tp, n);
|
|
}
|
|
TMP_FREE(marker);
|
|
}
|
|
}
|
|
|
|
|
|
/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
|
|
N=n*BITS_PER_MP_LIMB
|
|
2^omega is a primitive root mod 2^N+1
|
|
output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */
|
|
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_fft (mp_limb_t **Ap, mp_limb_t **Bp, mp_size_t K, int **ll,
|
|
mp_size_t omega, mp_size_t n, mp_size_t inc, mp_limb_t *tp)
|
|
#else
|
|
mpn_fft_fft(Ap,Bp,K,ll,omega,n,inc,tp)
|
|
mp_limb_t **Ap,**Bp,*tp;
|
|
mp_size_t K,omega,n,inc;
|
|
int **ll;
|
|
#endif
|
|
{
|
|
if (K==2) {
|
|
#ifdef ADDSUB
|
|
if (mpn_addsub_n(Ap[0], Ap[inc], Ap[0], Ap[inc], n+1) & 1)
|
|
#else
|
|
MPN_COPY(tp, Ap[0], n+1);
|
|
mpn_add_n(Ap[0], Ap[0], Ap[inc],n+1);
|
|
if (mpn_sub_n(Ap[inc], tp, Ap[inc],n+1))
|
|
#endif
|
|
Ap[inc][n] = mpn_add_1(Ap[inc], Ap[inc], n, 1);
|
|
#ifdef ADDSUB
|
|
if (mpn_addsub_n(Bp[0], Bp[inc], Bp[0], Bp[inc], n+1) & 1)
|
|
#else
|
|
MPN_COPY(tp, Bp[0], n+1);
|
|
mpn_add_n(Bp[0], Bp[0], Bp[inc],n+1);
|
|
if (mpn_sub_n(Bp[inc], tp, Bp[inc],n+1))
|
|
#endif
|
|
Bp[inc][n] = mpn_add_1(Bp[inc], Bp[inc], n, 1);
|
|
}
|
|
else {
|
|
int j, inc2=2*inc;
|
|
int *lk=*ll;
|
|
mp_limb_t *tmp;
|
|
TMP_DECL(marker);
|
|
|
|
TMP_MARK(marker);
|
|
tmp = TMP_ALLOC_LIMBS (n+1);
|
|
mpn_fft_fft(Ap, Bp, K/2,ll-1,2*omega,n,inc2, tp);
|
|
mpn_fft_fft(Ap+inc, Bp+inc, K/2,ll-1,2*omega,n,inc2, tp);
|
|
/* A[2*j*inc] <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
|
|
A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
|
|
for (j=0;j<K/2;j++,lk+=2,Ap+=2*inc,Bp+=2*inc) {
|
|
MPN_COPY(tp, Ap[inc], n+1);
|
|
mpn_fft_mul_2exp_modF(Ap[inc], lk[1]*omega, n, tmp);
|
|
mpn_fft_add_modF(Ap[inc], Ap[0], n);
|
|
mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
|
|
mpn_fft_add_modF(Ap[0], tp, n);
|
|
MPN_COPY(tp, Bp[inc], n+1);
|
|
mpn_fft_mul_2exp_modF(Bp[inc], lk[1]*omega, n, tmp);
|
|
mpn_fft_add_modF(Bp[inc], Bp[0], n);
|
|
mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
|
|
mpn_fft_add_modF(Bp[0], tp, n);
|
|
}
|
|
TMP_FREE(marker);
|
|
}
|
|
}
|
|
|
|
|
|
/* a[i] <- a[i]*b[i] mod 2^(n*BITS_PER_MP_LIMB)+1 for 0 <= i < K */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_mul_modF_K (mp_limb_t **ap, mp_limb_t **bp, mp_size_t n, int K)
|
|
#else
|
|
mpn_fft_mul_modF_K(ap, bp, n, K)
|
|
mp_limb_t **ap, **bp;
|
|
mp_size_t n;
|
|
int K;
|
|
#endif
|
|
{
|
|
int i;
|
|
int sqr = (ap == bp);
|
|
TMP_DECL(marker);
|
|
|
|
TMP_MARK(marker);
|
|
|
|
if (n >= (sqr ? FFT_MODF_SQR_THRESHOLD : FFT_MODF_MUL_THRESHOLD)) {
|
|
int k, K2,nprime2,Nprime2,M2,maxLK,l,Mp2;
|
|
int **_fft_l;
|
|
mp_limb_t **Ap,**Bp,*A,*B,*T;
|
|
|
|
k = mpn_fft_best_k (n, sqr);
|
|
K2 = 1<<k;
|
|
maxLK = (K2>BITS_PER_MP_LIMB) ? K2 : BITS_PER_MP_LIMB;
|
|
M2 = n*BITS_PER_MP_LIMB/K2;
|
|
l = n/K2;
|
|
Nprime2 = ((2*M2+k+2+maxLK)/maxLK)*maxLK; /* ceil((2*M2+k+3)/maxLK)*maxLK*/
|
|
nprime2 = Nprime2/BITS_PER_MP_LIMB;
|
|
Mp2 = Nprime2/K2;
|
|
|
|
Ap = TMP_ALLOC_MP_PTRS (K2);
|
|
Bp = TMP_ALLOC_MP_PTRS (K2);
|
|
A = TMP_ALLOC_LIMBS (2*K2*(nprime2+1));
|
|
T = TMP_ALLOC_LIMBS (nprime2+1);
|
|
B = A + K2*(nprime2+1);
|
|
_fft_l = TMP_ALLOC_TYPE (k+1, int*);
|
|
for (i=0;i<=k;i++)
|
|
_fft_l[i] = TMP_ALLOC_TYPE (1<<i, int);
|
|
mpn_fft_initl(_fft_l, k);
|
|
|
|
TRACE (printf("recurse: %dx%d limbs -> %d times %dx%d (%1.2f)\n", n,
|
|
n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));
|
|
|
|
for (i=0;i<K;i++,ap++,bp++)
|
|
mpn_mul_fft_internal(*ap, *ap, *bp, n, k, K2, Ap, Bp, A, B, nprime2,
|
|
l, Mp2, _fft_l, T, 1);
|
|
}
|
|
else {
|
|
mp_limb_t *a, *b, cc, *tp, *tpn; int n2=2*n;
|
|
tp = TMP_ALLOC_LIMBS (n2);
|
|
tpn = tp+n;
|
|
TRACE (printf (" mpn_mul_n %d of %d limbs\n", K, n));
|
|
for (i=0;i<K;i++) {
|
|
a = *ap++; b=*bp++;
|
|
if (sqr)
|
|
mpn_sqr_n(tp, a, n);
|
|
else
|
|
mpn_mul_n(tp, b, a, n);
|
|
if (a[n]) cc=mpn_add_n(tpn, tpn, b, n); else cc=0;
|
|
if (b[n]) cc += mpn_add_n(tpn, tpn, a, n) + a[n];
|
|
if (cc) {
|
|
cc = mpn_add_1(tp, tp, n2, cc);
|
|
ASSERT_NOCARRY (mpn_add_1(tp, tp, n2, cc));
|
|
}
|
|
a[n] = mpn_sub_n(a, tp, tpn, n) && mpn_add_1(a, a, n, 1);
|
|
}
|
|
}
|
|
TMP_FREE(marker);
|
|
}
|
|
|
|
|
|
/* input: A^[l[k][0]] A^[l[k][1]] ... A^[l[k][K-1]]
|
|
output: K*A[0] K*A[K-1] ... K*A[1] */
|
|
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_fftinv (mp_limb_t **Ap, int K, mp_size_t omega, mp_size_t n,
|
|
mp_limb_t *tp)
|
|
#else
|
|
mpn_fft_fftinv(Ap,K,omega,n,tp)
|
|
mp_limb_t **Ap, *tp;
|
|
int K;
|
|
mp_size_t omega, n;
|
|
#endif
|
|
{
|
|
if (K==2) {
|
|
#ifdef ADDSUB
|
|
if (mpn_addsub_n(Ap[0], Ap[1], Ap[0], Ap[1], n+1) & 1)
|
|
#else
|
|
MPN_COPY(tp, Ap[0], n+1);
|
|
mpn_add_n(Ap[0], Ap[0], Ap[1], n+1);
|
|
if (mpn_sub_n(Ap[1], tp, Ap[1], n+1))
|
|
#endif
|
|
Ap[1][n] = mpn_add_1(Ap[1], Ap[1], n, 1);
|
|
}
|
|
else {
|
|
int j, K2=K/2; mp_limb_t **Bp=Ap+K2, *tmp;
|
|
TMP_DECL(marker);
|
|
|
|
TMP_MARK(marker);
|
|
tmp = TMP_ALLOC_LIMBS (n+1);
|
|
mpn_fft_fftinv(Ap, K2, 2*omega, n, tp);
|
|
mpn_fft_fftinv(Bp, K2, 2*omega, n, tp);
|
|
/* A[j] <- A[j] + omega^j A[j+K/2]
|
|
A[j+K/2] <- A[j] + omega^(j+K/2) A[j+K/2] */
|
|
for (j=0;j<K2;j++,Ap++,Bp++) {
|
|
MPN_COPY(tp, Bp[0], n+1);
|
|
mpn_fft_mul_2exp_modF(Bp[0], (j+K2)*omega, n, tmp);
|
|
mpn_fft_add_modF(Bp[0], Ap[0], n);
|
|
mpn_fft_mul_2exp_modF(tp, j*omega, n, tmp);
|
|
mpn_fft_add_modF(Ap[0], tp, n);
|
|
}
|
|
TMP_FREE(marker);
|
|
}
|
|
}
|
|
|
|
|
|
/* A <- A/2^k mod 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_div_2exp_modF (mp_limb_t *ap, int k, mp_size_t n, mp_limb_t *tp)
|
|
#else
|
|
mpn_fft_div_2exp_modF(ap,k,n,tp)
|
|
mp_limb_t *ap,*tp;
|
|
int k;
|
|
mp_size_t n;
|
|
#endif
|
|
{
|
|
int i;
|
|
|
|
i = 2*n*BITS_PER_MP_LIMB;
|
|
i = (i-k) % i;
|
|
mpn_fft_mul_2exp_modF(ap,i,n,tp);
|
|
/* 1/2^k = 2^(2nL-k) mod 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
/* normalize so that A < 2^(n*BITS_PER_MP_LIMB)+1 */
|
|
if (ap[n]==1) {
|
|
for (i=0;i<n && ap[i]==0;i++);
|
|
if (i<n) {
|
|
ap[n]=0;
|
|
mpn_sub_1(ap, ap, n, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* R <- A mod 2^(n*BITS_PER_MP_LIMB)+1, n<=an<=3*n */
|
|
static void
|
|
#if __STDC__
|
|
mpn_fft_norm_modF(mp_limb_t *rp, mp_limb_t *ap, mp_size_t n, mp_size_t an)
|
|
#else
|
|
mpn_fft_norm_modF(rp, ap, n, an)
|
|
mp_limb_t *rp;
|
|
mp_limb_t *ap;
|
|
mp_size_t n;
|
|
mp_size_t an;
|
|
#endif
|
|
{
|
|
mp_size_t l;
|
|
|
|
if (an>2*n) {
|
|
l = n;
|
|
rp[n] = mpn_add_1(rp+an-2*n, ap+an-2*n, 3*n-an,
|
|
mpn_add_n(rp,ap,ap+2*n,an-2*n));
|
|
}
|
|
else {
|
|
l = an-n;
|
|
MPN_COPY(rp, ap, n);
|
|
rp[n]=0;
|
|
}
|
|
if (mpn_sub_n(rp,rp,ap+n,l)) {
|
|
if (mpn_sub_1(rp+l,rp+l,n+1-l,1))
|
|
rp[n]=mpn_add_1(rp,rp,n,1);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
#if __STDC__
|
|
mpn_mul_fft_internal(mp_limb_t *op, mp_srcptr n, mp_srcptr m, mp_size_t pl,
|
|
int k, int K,
|
|
mp_limb_t **Ap, mp_limb_t **Bp,
|
|
mp_limb_t *A, mp_limb_t *B,
|
|
mp_size_t nprime, mp_size_t l, mp_size_t Mp,
|
|
int **_fft_l,
|
|
mp_limb_t *T, int rec)
|
|
#else
|
|
mpn_mul_fft_internal(op,n,m,pl,k,K,Ap,Bp,A,B,nprime,l,Mp,_fft_l,T,rec)
|
|
mp_limb_t *op;
|
|
mp_srcptr n, m;
|
|
mp_limb_t **Ap,**Bp,*A,*B,*T;
|
|
mp_size_t pl,nprime;
|
|
int **_fft_l;
|
|
int k,K,l,Mp,rec;
|
|
#endif
|
|
{
|
|
int i, sqr, pla, lo, sh, j;
|
|
mp_limb_t *p;
|
|
|
|
sqr = (n==m);
|
|
|
|
TRACE (printf ("pl=%d k=%d K=%d np=%d l=%d Mp=%d rec=%d sqr=%d\n",
|
|
pl,k,K,nprime,l,Mp,rec,sqr));
|
|
|
|
/* decomposition of inputs into arrays Ap[i] and Bp[i] */
|
|
if (rec) for (i=0;i<K;i++) {
|
|
Ap[i] = A+i*(nprime+1); Bp[i] = B+i*(nprime+1);
|
|
/* store the next M bits of n into A[i] */
|
|
/* supposes that M is a multiple of BITS_PER_MP_LIMB */
|
|
MPN_COPY(Ap[i], n, l); n+=l; MPN_ZERO(Ap[i]+l, nprime+1-l);
|
|
/* set most significant bits of n and m (important in recursive calls) */
|
|
if (i==K-1) Ap[i][l]=n[0];
|
|
mpn_fft_mul_2exp_modF(Ap[i], i*Mp, nprime, T);
|
|
if (!sqr) {
|
|
MPN_COPY(Bp[i], m, l); m+=l; MPN_ZERO(Bp[i]+l, nprime+1-l);
|
|
if (i==K-1) Bp[i][l]=m[0];
|
|
mpn_fft_mul_2exp_modF(Bp[i], i*Mp, nprime, T);
|
|
}
|
|
}
|
|
|
|
/* direct fft's */
|
|
if (sqr) mpn_fft_fft_sqr(Ap,K,_fft_l+k,2*Mp,nprime,1, T);
|
|
else mpn_fft_fft(Ap,Bp,K,_fft_l+k,2*Mp,nprime,1, T);
|
|
|
|
/* term to term multiplications */
|
|
mpn_fft_mul_modF_K(Ap, (sqr) ? Ap : Bp, nprime, K);
|
|
|
|
/* inverse fft's */
|
|
mpn_fft_fftinv(Ap, K, 2*Mp, nprime, T);
|
|
|
|
/* division of terms after inverse fft */
|
|
for (i=0;i<K;i++) mpn_fft_div_2exp_modF(Ap[i],k+((K-i)%K)*Mp,nprime, T);
|
|
|
|
/* addition of terms in result p */
|
|
MPN_ZERO(T,nprime+1);
|
|
pla = l*(K-1)+nprime+1; /* number of required limbs for p */
|
|
p = B; /* B has K*(n'+1) limbs, which is >= pla, i.e. enough */
|
|
MPN_ZERO(p, pla);
|
|
sqr=0; /* will accumulate the (signed) carry at p[pla] */
|
|
for (i=K-1,lo=l*i+nprime,sh=l*i;i>=0;i--,lo-=l,sh-=l) {
|
|
mp_ptr n = p+sh;
|
|
j = (K-i)%K;
|
|
if (mpn_add_n(n,n,Ap[j],nprime+1))
|
|
sqr += mpn_add_1(n+nprime+1,n+nprime+1,pla-sh-nprime-1,1);
|
|
T[2*l]=i+1; /* T = (i+1)*2^(2*M) */
|
|
if (mpn_cmp(Ap[j],T,nprime+1)>0) { /* subtract 2^N'+1 */
|
|
sqr -= mpn_sub_1(n,n,pla-sh,1);
|
|
sqr -= mpn_sub_1(p+lo,p+lo,pla-lo,1);
|
|
}
|
|
}
|
|
if (sqr==-1) {
|
|
if ((sqr=mpn_add_1(p+pla-pl,p+pla-pl,pl,1))) {
|
|
/* p[pla-pl]...p[pla-1] are all zero */
|
|
mpn_sub_1(p+pla-pl-1,p+pla-pl-1,pl+1,1);
|
|
mpn_sub_1(p+pla-1,p+pla-1,1,1);
|
|
}
|
|
}
|
|
else if (sqr==1) {
|
|
if (pla>=2*pl)
|
|
while ((sqr=mpn_add_1(p+pla-2*pl,p+pla-2*pl,2*pl,sqr)));
|
|
else {
|
|
sqr = mpn_sub_1(p+pla-pl,p+pla-pl,pl,sqr);
|
|
ASSERT (sqr == 0);
|
|
}
|
|
}
|
|
else
|
|
ASSERT (sqr == 0);
|
|
|
|
/* here p < 2^(2M) [K 2^(M(K-1)) + (K-1) 2^(M(K-2)) + ... ]
|
|
< K 2^(2M) [2^(M(K-1)) + 2^(M(K-2)) + ... ]
|
|
< K 2^(2M) 2^(M(K-1))*2 = 2^(M*K+M+k+1) */
|
|
mpn_fft_norm_modF(op,p,pl,pla);
|
|
}
|
|
|
|
|
|
/* op <- n*m mod 2^N+1 with fft of size 2^k where N=pl*BITS_PER_MP_LIMB
|
|
n and m have respectively nl and ml limbs
|
|
op must have space for pl+1 limbs
|
|
One must have pl = mpn_fft_next_size(pl, k).
|
|
*/
|
|
|
|
void
|
|
#if __STDC__
|
|
mpn_mul_fft (mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
int k)
|
|
#else
|
|
mpn_mul_fft (op, pl, n, nl, m, ml, k)
|
|
mp_ptr op;
|
|
mp_size_t pl;
|
|
mp_srcptr n;
|
|
mp_size_t nl;
|
|
mp_srcptr m;
|
|
mp_size_t ml;
|
|
int k;
|
|
#endif
|
|
{
|
|
int K,maxLK,i,j;
|
|
mp_size_t N,Nprime,nprime,M,Mp,l;
|
|
mp_limb_t **Ap,**Bp,*A,*T,*B;
|
|
int **_fft_l;
|
|
int sqr = (n==m && nl==ml);
|
|
TMP_DECL(marker);
|
|
|
|
TRACE (printf ("\nmpn_mul_fft pl=%ld nl=%ld ml=%ld k=%d\n",
|
|
pl, nl, ml, k));
|
|
ASSERT_ALWAYS (mpn_fft_next_size(pl, k) == pl);
|
|
|
|
TMP_MARK(marker);
|
|
N = pl*BITS_PER_MP_LIMB;
|
|
_fft_l = TMP_ALLOC_TYPE (k+1, int*);
|
|
for (i=0;i<=k;i++)
|
|
_fft_l[i] = TMP_ALLOC_TYPE (1<<i, int);
|
|
mpn_fft_initl(_fft_l, k);
|
|
K = 1<<k;
|
|
M = N/K; /* N = 2^k M */
|
|
l = M/BITS_PER_MP_LIMB;
|
|
maxLK = (K>BITS_PER_MP_LIMB) ? K : BITS_PER_MP_LIMB;
|
|
|
|
Nprime = ((2*M+k+2+maxLK)/maxLK)*maxLK; /* ceil((2*M+k+3)/maxLK)*maxLK; */
|
|
nprime = Nprime/BITS_PER_MP_LIMB;
|
|
TRACE (printf ("N=%d K=%d, M=%d, l=%d, maxLK=%d, Np=%d, np=%d\n",
|
|
N, K, M, l, maxLK, Nprime, nprime));
|
|
if (nprime >= (sqr ? FFT_MODF_SQR_THRESHOLD : FFT_MODF_MUL_THRESHOLD)) {
|
|
maxLK = (1<<mpn_fft_best_k(nprime,n==m))*BITS_PER_MP_LIMB;
|
|
if (Nprime % maxLK) {
|
|
Nprime=((Nprime/maxLK)+1)*maxLK;
|
|
nprime = Nprime/BITS_PER_MP_LIMB;
|
|
}
|
|
TRACE (printf ("new maxLK=%d, Np=%d, np=%d\n", maxLK, Nprime, nprime));
|
|
}
|
|
|
|
T = TMP_ALLOC_LIMBS (nprime+1);
|
|
Mp = Nprime/K;
|
|
|
|
TRACE (printf("%dx%d limbs -> %d times %dx%d limbs (%1.2f)\n",
|
|
pl,pl,K,nprime,nprime,2.0*(double)N/Nprime/K);
|
|
printf(" temp space %ld\n", 2*K*(nprime+1)));
|
|
|
|
A = _MP_ALLOCATE_FUNC_LIMBS (2*K*(nprime+1));
|
|
B = A+K*(nprime+1);
|
|
Ap = TMP_ALLOC_MP_PTRS (K);
|
|
Bp = TMP_ALLOC_MP_PTRS (K);
|
|
/* special decomposition for main call */
|
|
for (i=0;i<K;i++) {
|
|
Ap[i] = A+i*(nprime+1); Bp[i] = B+i*(nprime+1);
|
|
/* store the next M bits of n into A[i] */
|
|
/* supposes that M is a multiple of BITS_PER_MP_LIMB */
|
|
if (nl>0) {
|
|
j = (nl>=l) ? l : nl; /* limbs to store in Ap[i] */
|
|
MPN_COPY(Ap[i], n, j); n+=l; MPN_ZERO(Ap[i]+j, nprime+1-j);
|
|
mpn_fft_mul_2exp_modF(Ap[i], i*Mp, nprime, T);
|
|
}
|
|
else MPN_ZERO(Ap[i], nprime+1);
|
|
nl -= l;
|
|
if (n!=m) {
|
|
if (ml>0) {
|
|
j = (ml>=l) ? l : ml; /* limbs to store in Bp[i] */
|
|
MPN_COPY(Bp[i], m, j); m+=l; MPN_ZERO(Bp[i]+j, nprime+1-j);
|
|
mpn_fft_mul_2exp_modF(Bp[i], i*Mp, nprime, T);
|
|
}
|
|
else MPN_ZERO(Bp[i], nprime+1);
|
|
}
|
|
ml -= l;
|
|
}
|
|
mpn_mul_fft_internal(op,n,m,pl,k,K,Ap,Bp,A,B,nprime,l,Mp,_fft_l,T,0);
|
|
TMP_FREE(marker);
|
|
_MP_FREE_FUNC_LIMBS (A, 2*K*(nprime+1));
|
|
}
|
|
|
|
|
|
#if WANT_ASSERT
|
|
static int
|
|
#if __STDC__
|
|
mpn_zero_p (mp_ptr p, mp_size_t n)
|
|
#else
|
|
mpn_zero_p (p, n)
|
|
mp_ptr p;
|
|
mp_size_t n;
|
|
#endif
|
|
{
|
|
mp_size_t i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (p[i] != 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Multiply {n,nl}*{m,ml} and write the result to {op,nl+ml}.
|
|
|
|
FIXME: Duplicating the result like this is wasteful, do something better
|
|
perhaps at the norm_modF stage above. */
|
|
|
|
void
|
|
#if __STDC__
|
|
mpn_mul_fft_full (mp_ptr op,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml)
|
|
#else
|
|
mpn_mul_fft_full (op, n, nl, m, ml)
|
|
mp_ptr op;
|
|
mp_srcptr n;
|
|
mp_size_t nl;
|
|
mp_srcptr m;
|
|
mp_size_t ml;
|
|
#endif
|
|
{
|
|
mp_ptr pad_op;
|
|
mp_size_t pl;
|
|
int k;
|
|
int sqr = (n==m && nl==ml);
|
|
|
|
k = mpn_fft_best_k (nl+ml, sqr);
|
|
pl = mpn_fft_next_size (nl+ml, k);
|
|
|
|
TRACE (printf ("mpn_mul_fft_full nl=%ld ml=%ld -> pl=%ld k=%d\n",
|
|
nl, ml, pl, k));
|
|
|
|
pad_op = _MP_ALLOCATE_FUNC_LIMBS (pl+1);
|
|
mpn_mul_fft (pad_op, pl, n, nl, m, ml, k);
|
|
|
|
ASSERT (mpn_zero_p (pad_op+nl+ml, pl+1-(nl+ml)));
|
|
MPN_COPY (op, pad_op, nl+ml);
|
|
|
|
_MP_FREE_FUNC_LIMBS (pad_op, pl+1);
|
|
}
|