mirror of https://github.com/macssh/macssh.git
1083 lines
36 KiB
C
Executable File
1083 lines
36 KiB
C
Executable File
/* Include file for internal GNU MP types and definitions.
|
|
|
|
THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND ARE ALMOST CERTAIN TO
|
|
BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE GNU MP RELEASES.
|
|
|
|
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000 Free Software
|
|
Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include "gmp-mparam.h"
|
|
/* #include "longlong.h" */
|
|
|
|
/* When using gcc, make sure to use its builtin alloca. */
|
|
#if ! defined (alloca) && defined (__GNUC__)
|
|
#define alloca __builtin_alloca
|
|
#define HAVE_ALLOCA
|
|
#endif
|
|
|
|
/* When using cc, do whatever necessary to allow use of alloca. For many
|
|
machines, this means including alloca.h. IBM's compilers need a #pragma
|
|
in "each module that needs to use alloca". */
|
|
#if ! defined (alloca)
|
|
/* We need lots of variants for MIPS, to cover all versions and perversions
|
|
of OSes for MIPS. */
|
|
#if defined (__mips) || defined (MIPSEL) || defined (MIPSEB) \
|
|
|| defined (_MIPSEL) || defined (_MIPSEB) || defined (__sgi) \
|
|
|| defined (__alpha) || defined (__sparc) || defined (sparc) \
|
|
|| defined (__ksr__)
|
|
#include <alloca.h>
|
|
#define HAVE_ALLOCA
|
|
#endif
|
|
#if defined (_IBMR2)
|
|
#pragma alloca
|
|
#define HAVE_ALLOCA
|
|
#endif
|
|
#if defined (__DECC)
|
|
#define alloca(x) __ALLOCA(x)
|
|
#define HAVE_ALLOCA
|
|
#endif
|
|
#endif
|
|
|
|
#if defined (alloca)
|
|
#define HAVE_ALLOCA
|
|
#endif
|
|
|
|
#if ! defined (HAVE_ALLOCA) || USE_STACK_ALLOC
|
|
#include "stack-alloc.h"
|
|
#elif defined(__MWERKS__) && !defined(powerc)
|
|
inline asm long GetSP() {
|
|
move.l sp,d0
|
|
}
|
|
#define ALLOCA_START(x) register long x = GetSP()
|
|
#define ALLOCA_FREE(x) asm { move.l x,sp }
|
|
#define TMP_DECL(m) ALLOCA_START(m)
|
|
#define TMP_ALLOC(x) alloca(x)
|
|
#define TMP_MARK(m)
|
|
#define TMP_FREE(m) ALLOCA_FREE(m)
|
|
#else
|
|
#define TMP_DECL(m)
|
|
#define TMP_ALLOC(x) alloca(x)
|
|
#define TMP_MARK(m)
|
|
#define TMP_FREE(m)
|
|
#endif
|
|
|
|
/* Allocating various types. */
|
|
#define TMP_ALLOC_TYPE(n,type) ((type *) TMP_ALLOC ((n) * sizeof (type)))
|
|
#define TMP_ALLOC_LIMBS(n) TMP_ALLOC_TYPE(n,mp_limb_t)
|
|
#define TMP_ALLOC_MP_PTRS(n) TMP_ALLOC_TYPE(n,mp_ptr)
|
|
|
|
|
|
#if ! defined (__GNUC__) /* FIXME: Test for C++ compilers here,
|
|
__DECC understands __inline */
|
|
#define inline /* Empty */
|
|
#endif
|
|
|
|
#define ABS(x) (x >= 0 ? x : -x)
|
|
#define MIN(l,o) ((l) < (o) ? (l) : (o))
|
|
#define MAX(h,i) ((h) > (i) ? (h) : (i))
|
|
#define numberof(x) (sizeof (x) / sizeof ((x)[0]))
|
|
|
|
/* Field access macros. */
|
|
#define SIZ(x) ((x)->_mp_size)
|
|
#define ABSIZ(x) ABS (SIZ (x))
|
|
#define PTR(x) ((x)->_mp_d)
|
|
#define LIMBS(x) ((x)->_mp_d)
|
|
#define EXP(x) ((x)->_mp_exp)
|
|
#define PREC(x) ((x)->_mp_prec)
|
|
#define ALLOC(x) ((x)->_mp_alloc)
|
|
|
|
/* Extra casts because shorts are promoted to ints by "~" and "<<". "-1"
|
|
rather than "1" in SIGNED_TYPE_MIN avoids warnings from some compilers
|
|
about arithmetic overflow. */
|
|
#define UNSIGNED_TYPE_MAX(type) ((type) ~ (type) 0)
|
|
#define UNSIGNED_TYPE_HIGHBIT(type) ((type) ~ (UNSIGNED_TYPE_MAX(type) >> 1))
|
|
#define SIGNED_TYPE_MIN(type) (((type) -1) << (8*sizeof(type)-1))
|
|
#define SIGNED_TYPE_MAX(type) ((type) ~ SIGNED_TYPE_MIN(type))
|
|
#define SIGNED_TYPE_HIGHBIT(type) SIGNED_TYPE_MIN(type)
|
|
|
|
#define MP_LIMB_T_MAX UNSIGNED_TYPE_MAX (mp_limb_t)
|
|
#define MP_LIMB_T_HIGHBIT UNSIGNED_TYPE_HIGHBIT (mp_limb_t)
|
|
|
|
#define MP_SIZE_T_MAX SIGNED_TYPE_MAX (mp_size_t)
|
|
|
|
#ifndef ULONG_MAX
|
|
#define ULONG_MAX UNSIGNED_TYPE_MAX (unsigned long)
|
|
#endif
|
|
#define ULONG_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned long)
|
|
#define LONG_HIGHBIT SIGNED_TYPE_HIGHBIT (long)
|
|
#ifndef LONG_MAX
|
|
#define LONG_MAX SIGNED_TYPE_MAX (long)
|
|
#endif
|
|
|
|
#ifndef USHORT_MAX
|
|
#define USHORT_MAX UNSIGNED_TYPE_MAX (unsigned short)
|
|
#endif
|
|
#define USHORT_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned short)
|
|
#define SHORT_HIGHBIT SIGNED_TYPE_HIGHBIT (short)
|
|
#ifndef SHORT_MAX
|
|
#define SHORT_MAX SIGNED_TYPE_MAX (short)
|
|
#endif
|
|
|
|
|
|
/* Swap macros. */
|
|
|
|
#define MP_LIMB_T_SWAP(x, y) \
|
|
do { \
|
|
mp_limb_t __mp_limb_t_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mp_limb_t_swap__tmp; \
|
|
} while (0)
|
|
#define MP_SIZE_T_SWAP(x, y) \
|
|
do { \
|
|
mp_size_t __mp_size_t_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mp_size_t_swap__tmp; \
|
|
} while (0)
|
|
|
|
#define MP_PTR_SWAP(x, y) \
|
|
do { \
|
|
mp_ptr __mp_ptr_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mp_ptr_swap__tmp; \
|
|
} while (0)
|
|
#define MP_SRCPTR_SWAP(x, y) \
|
|
do { \
|
|
mp_srcptr __mp_srcptr_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mp_srcptr_swap__tmp; \
|
|
} while (0)
|
|
|
|
#define MPN_PTR_SWAP(xp,xs, yp,ys) \
|
|
do { \
|
|
MP_PTR_SWAP (xp, yp); \
|
|
MP_SIZE_T_SWAP (xs, ys); \
|
|
} while(0)
|
|
#define MPN_SRCPTR_SWAP(xp,xs, yp,ys) \
|
|
do { \
|
|
MP_SRCPTR_SWAP (xp, yp); \
|
|
MP_SIZE_T_SWAP (xs, ys); \
|
|
} while(0)
|
|
|
|
#define MPZ_PTR_SWAP(x, y) \
|
|
do { \
|
|
mpz_ptr __mpz_ptr_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mpz_ptr_swap__tmp; \
|
|
} while (0)
|
|
#define MPZ_SRCPTR_SWAP(x, y) \
|
|
do { \
|
|
mpz_srcptr __mpz_srcptr_swap__tmp = (x); \
|
|
(x) = (y); \
|
|
(y) = __mpz_srcptr_swap__tmp; \
|
|
} while (0)
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* FIXME: These are purely internal, so do a search and replace to change
|
|
them to __gmp forms, rather than using these macros. */
|
|
#define _mp_allocate_func __gmp_allocate_func
|
|
#define _mp_reallocate_func __gmp_reallocate_func
|
|
#define _mp_free_func __gmp_free_func
|
|
#define _mp_default_allocate __gmp_default_allocate
|
|
#define _mp_default_reallocate __gmp_default_reallocate
|
|
#define _mp_default_free __gmp_default_free
|
|
|
|
extern void * (*_mp_allocate_func) _PROTO ((size_t));
|
|
extern void * (*_mp_reallocate_func) _PROTO ((void *, size_t, size_t));
|
|
extern void (*_mp_free_func) _PROTO ((void *, size_t));
|
|
|
|
void *_mp_default_allocate _PROTO ((size_t));
|
|
void *_mp_default_reallocate _PROTO ((void *, size_t, size_t));
|
|
void _mp_default_free _PROTO ((void *, size_t));
|
|
|
|
#define _MP_ALLOCATE_FUNC_TYPE(n,type) \
|
|
((type *) (*_mp_allocate_func) ((n) * sizeof (type)))
|
|
#define _MP_ALLOCATE_FUNC_LIMBS(n) _MP_ALLOCATE_FUNC_TYPE(n,mp_limb_t)
|
|
|
|
#define _MP_FREE_FUNC_TYPE(p,n,type) (*_mp_free_func) (p, (n) * sizeof (type))
|
|
#define _MP_FREE_FUNC_LIMBS(p,n) _MP_FREE_FUNC_TYPE(p,n,mp_limb_t)
|
|
|
|
|
|
#if (__STDC__-0) || defined (__cplusplus)
|
|
|
|
#else
|
|
|
|
#define const /* Empty */
|
|
#define signed /* Empty */
|
|
|
|
#endif
|
|
|
|
#if defined (__GNUC__) && defined (__i386__)
|
|
#if 0 /* check that these actually improve things */
|
|
#define MPN_COPY_INCR(DST, SRC, N) \
|
|
__asm__ ("cld\n\trep\n\tmovsl" : : \
|
|
"D" (DST), "S" (SRC), "c" (N) : \
|
|
"cx", "di", "si", "memory")
|
|
#define MPN_COPY_DECR(DST, SRC, N) \
|
|
__asm__ ("std\n\trep\n\tmovsl" : : \
|
|
"D" ((DST) + (N) - 1), "S" ((SRC) + (N) - 1), "c" (N) : \
|
|
"cx", "di", "si", "memory")
|
|
#define MPN_NORMALIZE_NOT_ZERO(P, N) \
|
|
do { \
|
|
__asm__ ("std\n\trepe\n\tscasl" : "=c" (N) : \
|
|
"a" (0), "D" ((P) + (N) - 1), "0" (N) : \
|
|
"cx", "di"); \
|
|
(N)++; \
|
|
} while (0)
|
|
#endif
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_copyi
|
|
#define mpn_copyi __MPN(copyi)
|
|
void mpn_copyi _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
|
|
#endif
|
|
|
|
/* Remap names of internal mpn functions. */
|
|
#define __clz_tab __MPN(clz_tab)
|
|
#define mpn_udiv_w_sdiv __MPN(udiv_w_sdiv)
|
|
#define mpn_reciprocal __MPN(reciprocal)
|
|
|
|
#define mpn_sb_divrem_mn __MPN(sb_divrem_mn)
|
|
#define mpn_bz_divrem_n __MPN(bz_divrem_n)
|
|
#define mpn_tdiv_qr __MPN(tdiv_qr)
|
|
/* #define mpn_tdiv_q __MPN(tdiv_q) */
|
|
|
|
#define mpn_kara_mul_n __MPN(kara_mul_n)
|
|
void mpn_kara_mul_n _PROTO((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr));
|
|
|
|
#define mpn_kara_sqr_n __MPN(kara_sqr_n)
|
|
void mpn_kara_sqr_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));
|
|
|
|
#define mpn_toom3_mul_n __MPN(toom3_mul_n)
|
|
void mpn_toom3_mul_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t,mp_ptr));
|
|
|
|
#define mpn_toom3_sqr_n __MPN(toom3_sqr_n)
|
|
void mpn_toom3_sqr_n _PROTO((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));
|
|
|
|
#define mpn_fft_best_k __MPN(fft_best_k)
|
|
int mpn_fft_best_k _PROTO ((mp_size_t n, int sqr));
|
|
|
|
#define mpn_mul_fft __MPN(mul_fft)
|
|
void mpn_mul_fft _PROTO ((mp_ptr op, mp_size_t pl,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml,
|
|
int k));
|
|
|
|
#define mpn_mul_fft_full __MPN(mul_fft_full)
|
|
void mpn_mul_fft_full _PROTO ((mp_ptr op,
|
|
mp_srcptr n, mp_size_t nl,
|
|
mp_srcptr m, mp_size_t ml));
|
|
|
|
#define mpn_fft_next_size __MPN(fft_next_size)
|
|
mp_size_t mpn_fft_next_size _PROTO ((mp_size_t pl, int k));
|
|
|
|
mp_limb_t mpn_sb_divrem_mn _PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t));
|
|
mp_limb_t mpn_bz_divrem_n _PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t));
|
|
void mpn_tdiv_qr _PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t));
|
|
/* void mpn_tdiv_q _PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); */
|
|
|
|
/* Copy NLIMBS *limbs* from SRC to DST, NLIMBS==0 allowed. */
|
|
#ifndef MPN_COPY_INCR
|
|
#if HAVE_NATIVE_mpn_copyi
|
|
#define MPN_COPY_INCR(DST, SRC, NLIMBS) mpn_copyi (DST, SRC, NLIMBS)
|
|
#else
|
|
#define MPN_COPY_INCR(DST, SRC, NLIMBS) \
|
|
do { \
|
|
mp_size_t __i; \
|
|
for (__i = 0; __i < (NLIMBS); __i++) \
|
|
(DST)[__i] = (SRC)[__i]; \
|
|
} while (0)
|
|
#endif
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_copyd
|
|
#define mpn_copyd __MPN(copyd)
|
|
void mpn_copyd _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
|
|
#endif
|
|
|
|
/* NLIMBS==0 allowed */
|
|
#ifndef MPN_COPY_DECR
|
|
#if HAVE_NATIVE_mpn_copyd
|
|
#define MPN_COPY_DECR(DST, SRC, NLIMBS) mpn_copyd (DST, SRC, NLIMBS)
|
|
#else
|
|
#define MPN_COPY_DECR(DST, SRC, NLIMBS) \
|
|
do { \
|
|
mp_size_t __i; \
|
|
for (__i = (NLIMBS) - 1; __i >= 0; __i--) \
|
|
(DST)[__i] = (SRC)[__i]; \
|
|
} while (0)
|
|
#endif
|
|
#endif
|
|
|
|
/* Define MPN_COPY for vector computers. Since #pragma cannot be in a macro,
|
|
rely on function inlining. */
|
|
#if defined (_CRAY) || defined (__uxp__)
|
|
static inline void
|
|
_MPN_COPY (d, s, n) mp_ptr d; mp_srcptr s; mp_size_t n;
|
|
{
|
|
int i; /* Faster for Cray with plain int */
|
|
#pragma _CRI ivdep /* Cray PVP systems */
|
|
#pragma loop noalias d,s /* Fujitsu VPP systems */
|
|
for (i = 0; i < n; i++)
|
|
d[i] = s[i];
|
|
}
|
|
#define MPN_COPY _MPN_COPY
|
|
#endif
|
|
|
|
#ifndef MPN_COPY
|
|
#define MPN_COPY MPN_COPY_INCR
|
|
#endif
|
|
|
|
/* Zero NLIMBS *limbs* AT DST. */
|
|
#ifndef MPN_ZERO
|
|
#define MPN_ZERO(DST, NLIMBS) \
|
|
do { \
|
|
mp_size_t __i; \
|
|
for (__i = 0; __i < (NLIMBS); __i++) \
|
|
(DST)[__i] = 0; \
|
|
} while (0)
|
|
#endif
|
|
|
|
#ifndef MPN_NORMALIZE
|
|
#define MPN_NORMALIZE(DST, NLIMBS) \
|
|
do { \
|
|
while (NLIMBS > 0) \
|
|
{ \
|
|
if ((DST)[(NLIMBS) - 1] != 0) \
|
|
break; \
|
|
NLIMBS--; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
#ifndef MPN_NORMALIZE_NOT_ZERO
|
|
#define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS) \
|
|
do { \
|
|
while (1) \
|
|
{ \
|
|
if ((DST)[(NLIMBS) - 1] != 0) \
|
|
break; \
|
|
NLIMBS--; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* Strip least significant zero limbs from ptr,size by incrementing ptr and
|
|
decrementing size. The number in ptr,size must be non-zero, ie. size!=0
|
|
and somewhere a non-zero limb. */
|
|
#define MPN_STRIP_LOW_ZEROS_NOT_ZERO(ptr, size) \
|
|
do \
|
|
{ \
|
|
ASSERT ((size) != 0); \
|
|
while ((ptr)[0] == 0) \
|
|
{ \
|
|
(ptr)++; \
|
|
(size)--; \
|
|
ASSERT (size >= 0); \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
/* Initialize X of type mpz_t with space for NLIMBS limbs. X should be a
|
|
temporary variable; it will be automatically cleared out at function
|
|
return. We use __x here to make it possible to accept both mpz_ptr and
|
|
mpz_t arguments. */
|
|
#define MPZ_TMP_INIT(X, NLIMBS) \
|
|
do { \
|
|
mpz_ptr __x = (X); \
|
|
__x->_mp_alloc = (NLIMBS); \
|
|
__x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB); \
|
|
} while (0)
|
|
|
|
/* Realloc for an mpz_t WHAT if it has less thann NEEDED limbs. */
|
|
#define MPZ_REALLOC(what,needed) \
|
|
do { \
|
|
if ((needed) > ALLOC (what)) \
|
|
_mpz_realloc (what, needed); \
|
|
} while (0)
|
|
|
|
/* If KARATSUBA_MUL_THRESHOLD is not already defined, define it to a
|
|
value which is good on most machines. */
|
|
#ifndef KARATSUBA_MUL_THRESHOLD
|
|
#define KARATSUBA_MUL_THRESHOLD 32
|
|
#endif
|
|
|
|
/* If TOOM3_MUL_THRESHOLD is not already defined, define it to a
|
|
value which is good on most machines. */
|
|
#ifndef TOOM3_MUL_THRESHOLD
|
|
#define TOOM3_MUL_THRESHOLD 256
|
|
#endif
|
|
|
|
#ifndef KARATSUBA_SQR_THRESHOLD
|
|
#define KARATSUBA_SQR_THRESHOLD (2*KARATSUBA_MUL_THRESHOLD)
|
|
#endif
|
|
|
|
#ifndef TOOM3_SQR_THRESHOLD
|
|
#define TOOM3_SQR_THRESHOLD (2*TOOM3_MUL_THRESHOLD)
|
|
#endif
|
|
|
|
/* First k to use for an FFT modF multiply. A modF FFT is an order
|
|
log(2^k)/log(2^(k-1)) algorithm, so k=3 is merely 1.5 like karatsuba,
|
|
whereas k=4 is 1.33 which is faster than toom3 at 1.485. */
|
|
#define FFT_FIRST_K 4
|
|
|
|
/* Threshold at which FFT should be used to do a modF NxN -> N multiply. */
|
|
#ifndef FFT_MODF_MUL_THRESHOLD
|
|
#define FFT_MODF_MUL_THRESHOLD (TOOM3_MUL_THRESHOLD * 3)
|
|
#endif
|
|
#ifndef FFT_MODF_SQR_THRESHOLD
|
|
#define FFT_MODF_SQR_THRESHOLD (TOOM3_SQR_THRESHOLD * 3)
|
|
#endif
|
|
|
|
/* Threshold at which FFT should be used to do an NxN -> 2N multiply. This
|
|
will be a size where FFT is using k=7 or k=8, since an FFT-k used for an
|
|
NxN->2N multiply and not recursing into itself is an order
|
|
log(2^k)/log(2^(k-2)) algorithm, so it'll be at least k=7 at 1.39 which
|
|
is the first better than toom3. */
|
|
#ifndef FFT_MUL_THRESHOLD
|
|
#define FFT_MUL_THRESHOLD (FFT_MODF_MUL_THRESHOLD * 10)
|
|
#endif
|
|
#ifndef FFT_SQR_THRESHOLD
|
|
#define FFT_SQR_THRESHOLD (FFT_MODF_SQR_THRESHOLD * 10)
|
|
#endif
|
|
|
|
/* Table of thresholds for successive modF FFT "k"s. The first entry is
|
|
where FFT_FIRST_K+1 should be used, the second FFT_FIRST_K+2,
|
|
etc. See mpn_fft_best_k(). */
|
|
#ifndef FFT_MUL_TABLE
|
|
#define FFT_MUL_TABLE \
|
|
{ TOOM3_MUL_THRESHOLD * 4, /* k=5 */ \
|
|
TOOM3_MUL_THRESHOLD * 8, /* k=6 */ \
|
|
TOOM3_MUL_THRESHOLD * 16, /* k=7 */ \
|
|
TOOM3_MUL_THRESHOLD * 32, /* k=8 */ \
|
|
TOOM3_MUL_THRESHOLD * 96, /* k=9 */ \
|
|
TOOM3_MUL_THRESHOLD * 288, /* k=10 */ \
|
|
0 }
|
|
#endif
|
|
#ifndef FFT_SQR_TABLE
|
|
#define FFT_SQR_TABLE \
|
|
{ TOOM3_SQR_THRESHOLD * 4, /* k=5 */ \
|
|
TOOM3_SQR_THRESHOLD * 8, /* k=6 */ \
|
|
TOOM3_SQR_THRESHOLD * 16, /* k=7 */ \
|
|
TOOM3_SQR_THRESHOLD * 32, /* k=8 */ \
|
|
TOOM3_SQR_THRESHOLD * 96, /* k=9 */ \
|
|
TOOM3_SQR_THRESHOLD * 288, /* k=10 */ \
|
|
0 }
|
|
#endif
|
|
|
|
#ifndef FFT_TABLE_ATTRS
|
|
#define FFT_TABLE_ATTRS static const
|
|
#endif
|
|
|
|
#define MPN_FFT_TABLE_SIZE 16
|
|
|
|
|
|
/* Return non-zero if xp,xsize and yp,ysize overlap.
|
|
If xp+xsize<=yp there's no overlap, or if yp+ysize<=xp there's no
|
|
overlap. If both these are false, there's an overlap. */
|
|
#define MPN_OVERLAP_P(xp, xsize, yp, ysize) \
|
|
((xp) + (xsize) > (yp) && (yp) + (ysize) > (xp))
|
|
|
|
|
|
/* ASSERT() is a private assertion checking scheme, similar to <assert.h>.
|
|
ASSERT() does the check only if WANT_ASSERT is selected, ASSERT_ALWAYS()
|
|
does it always. Generally assertions are meant for development, but
|
|
might help when looking for a problem later too.
|
|
|
|
ASSERT_NOCARRY() uses ASSERT() to check the expression is zero, but if
|
|
assertion checking is disabled, the expression is still evaluated. This
|
|
is meant for use with routines like mpn_add_n() where the return value
|
|
represents a carry or whatever that shouldn't occur. For example,
|
|
ASSERT_NOCARRY (mpn_add_n (rp, s1p, s2p, size)); */
|
|
|
|
#ifdef __LINE__
|
|
#define ASSERT_LINE __LINE__
|
|
#else
|
|
#define ASSERT_LINE -1
|
|
#endif
|
|
|
|
#ifdef __FILE__
|
|
#define ASSERT_FILE __FILE__
|
|
#else
|
|
#define ASSERT_FILE ""
|
|
#endif
|
|
|
|
int __gmp_assert_fail _PROTO((const char *filename, int linenum,
|
|
const char *expr));
|
|
|
|
#if HAVE_STRINGIZE
|
|
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, #expr)
|
|
#else
|
|
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, "expr")
|
|
#endif
|
|
|
|
#if HAVE_VOID
|
|
#define CAST_TO_VOID (void)
|
|
#else
|
|
#define CAST_TO_VOID
|
|
#endif
|
|
|
|
#define ASSERT_ALWAYS(expr) ((expr) ? 0 : ASSERT_FAIL (expr))
|
|
|
|
#if WANT_ASSERT
|
|
#define ASSERT(expr) ASSERT_ALWAYS (expr)
|
|
#define ASSERT_NOCARRY(expr) ASSERT_ALWAYS ((expr) == 0)
|
|
|
|
#else
|
|
#define ASSERT(expr) (CAST_TO_VOID 0)
|
|
#define ASSERT_NOCARRY(expr) (expr)
|
|
#endif
|
|
|
|
|
|
#if HAVE_NATIVE_mpn_com_n
|
|
#define mpn_com_n __MPN(com_n)
|
|
void mpn_com_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_com_n(d,s,n) \
|
|
do \
|
|
{ \
|
|
mp_ptr __d = (d); \
|
|
mp_srcptr __s = (s); \
|
|
mp_size_t __n = (n); \
|
|
do \
|
|
*__d++ = *__s++; \
|
|
while (--__n); \
|
|
} \
|
|
while (0)
|
|
#endif
|
|
|
|
#define MPN_LOGOPS_N_INLINE(d,s1,s2,n,dop,op,s2op) \
|
|
do \
|
|
{ \
|
|
mp_ptr __d = (d); \
|
|
mp_srcptr __s1 = (s1); \
|
|
mp_srcptr __s2 = (s2); \
|
|
mp_size_t __n = (n); \
|
|
do \
|
|
*__d++ = dop (*__s1++ op s2op *__s2++); \
|
|
while (--__n); \
|
|
} \
|
|
while (0)
|
|
|
|
#if HAVE_NATIVE_mpn_and_n
|
|
#define mpn_and_n __MPN(and_n)
|
|
void mpn_and_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_and_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&, )
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_andn_n
|
|
#define mpn_andn_n __MPN(andn_n)
|
|
void mpn_andn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_andn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&,~)
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_nand_n
|
|
#define mpn_nand_n __MPN(nand_n)
|
|
void mpn_nand_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_nand_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,&, )
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_ior_n
|
|
#define mpn_ior_n __MPN(ior_n)
|
|
void mpn_ior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_ior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|, )
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_iorn_n
|
|
#define mpn_iorn_n __MPN(iorn_n)
|
|
void mpn_iorn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_iorn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|,~)
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_nior_n
|
|
#define mpn_nior_n __MPN(nior_n)
|
|
void mpn_nior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_nior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,|, )
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_xor_n
|
|
#define mpn_xor_n __MPN(xor_n)
|
|
void mpn_xor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_xor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,^, )
|
|
#endif
|
|
|
|
#if HAVE_NATIVE_mpn_xnor_n
|
|
#define mpn_xnor_n __MPN(xnor_n)
|
|
void mpn_xnor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
|
|
#else
|
|
#define mpn_xnor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,^, )
|
|
#endif
|
|
|
|
/* Structure for conversion between internal binary format and
|
|
strings in base 2..36. */
|
|
struct bases
|
|
{
|
|
/* Number of digits in the conversion base that always fits in an mp_limb_t.
|
|
For example, for base 10 on a machine where a mp_limb_t has 32 bits this
|
|
is 9, since 10**9 is the largest number that fits into a mp_limb_t. */
|
|
int chars_per_limb;
|
|
|
|
/* log(2)/log(conversion_base) */
|
|
double chars_per_bit_exactly;
|
|
|
|
/* base**chars_per_limb, i.e. the biggest number that fits a word, built by
|
|
factors of base. Exception: For 2, 4, 8, etc, big_base is log2(base),
|
|
i.e. the number of bits used to represent each digit in the base. */
|
|
mp_limb_t big_base;
|
|
|
|
/* A BITS_PER_MP_LIMB bit approximation to 1/big_base, represented as a
|
|
fixed-point number. Instead of dividing by big_base an application can
|
|
choose to multiply by big_base_inverted. */
|
|
mp_limb_t big_base_inverted;
|
|
};
|
|
|
|
#define __mp_bases __MPN(mp_bases)
|
|
extern const struct bases __mp_bases[];
|
|
extern mp_size_t __gmp_default_fp_limb_precision;
|
|
|
|
#if defined (__i386__)
|
|
#define TARGET_REGISTER_STARVED 1
|
|
#else
|
|
#define TARGET_REGISTER_STARVED 0
|
|
#endif
|
|
|
|
/* Use a library function for invert_limb, if available. */
|
|
#if ! defined (invert_limb) && HAVE_NATIVE_mpn_invert_limb
|
|
#define mpn_invert_limb __MPN(invert_limb)
|
|
mp_limb_t mpn_invert_limb _PROTO ((mp_limb_t));
|
|
#define invert_limb(invxl,xl) (invxl = __MPN(invert_limb) (xl))
|
|
#endif
|
|
|
|
#ifndef invert_limb
|
|
#define invert_limb(invxl,xl) \
|
|
do { \
|
|
mp_limb_t dummy; \
|
|
if (xl << 1 == 0) \
|
|
invxl = ~(mp_limb_t) 0; \
|
|
else \
|
|
udiv_qrnnd (invxl, dummy, -xl, 0, xl); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest
|
|
limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB).
|
|
If this would yield overflow, DI should be the largest possible number
|
|
(i.e., only ones). For correct operation, the most significant bit of D
|
|
has to be set. Put the quotient in Q and the remainder in R. */
|
|
#define udiv_qrnnd_preinv(q, r, nh, nl, d, di) \
|
|
do { \
|
|
mp_limb_t _q, _ql, _r; \
|
|
mp_limb_t _xh, _xl; \
|
|
umul_ppmm (_q, _ql, (nh), (di)); \
|
|
_q += (nh); /* DI is 2**BITS_PER_MP_LIMB too small */\
|
|
umul_ppmm (_xh, _xl, _q, (d)); \
|
|
sub_ddmmss (_xh, _r, (nh), (nl), _xh, _xl); \
|
|
if (_xh != 0) \
|
|
{ \
|
|
sub_ddmmss (_xh, _r, _xh, _r, 0, (d)); \
|
|
_q += 1; \
|
|
if (_xh != 0) \
|
|
{ \
|
|
sub_ddmmss (_xh, _r, _xh, _r, 0, (d)); \
|
|
_q += 1; \
|
|
} \
|
|
} \
|
|
if (_r >= (d)) \
|
|
{ \
|
|
_r -= (d); \
|
|
_q += 1; \
|
|
} \
|
|
(r) = _r; \
|
|
(q) = _q; \
|
|
} while (0)
|
|
/* Like udiv_qrnnd_preinv, but for for any value D. DNORM is D shifted left
|
|
so that its most significant bit is set. LGUP is ceil(log2(D)). */
|
|
#define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \
|
|
do { \
|
|
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \
|
|
mp_limb_t _xh, _xl; \
|
|
_n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\
|
|
_n10 = (nl) << (BITS_PER_MP_LIMB - (lgup)); \
|
|
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \
|
|
_nadj = _n10 + (_n1 & (dnorm)); \
|
|
umul_ppmm (_xh, _xl, di, _n2 - _n1); \
|
|
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \
|
|
_q1 = ~(_n2 + _xh); \
|
|
umul_ppmm (_xh, _xl, _q1, d); \
|
|
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \
|
|
_xh -= (d); \
|
|
(r) = _xl + ((d) & _xh); \
|
|
(q) = _xh - _q1; \
|
|
} while (0)
|
|
/* Exactly like udiv_qrnnd_preinv, but branch-free. It is not clear which
|
|
version to use. */
|
|
#define udiv_qrnnd_preinv2norm(q, r, nh, nl, d, di) \
|
|
do { \
|
|
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \
|
|
mp_limb_t _xh, _xl; \
|
|
_n2 = (nh); \
|
|
_n10 = (nl); \
|
|
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \
|
|
_nadj = _n10 + (_n1 & (d)); \
|
|
umul_ppmm (_xh, _xl, di, _n2 - _n1); \
|
|
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \
|
|
_q1 = ~(_n2 + _xh); \
|
|
umul_ppmm (_xh, _xl, _q1, d); \
|
|
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \
|
|
_xh -= (d); \
|
|
(r) = _xl + ((d) & _xh); \
|
|
(q) = _xh - _q1; \
|
|
} while (0)
|
|
|
|
|
|
/* modlimb_invert() sets "inv" to the multiplicative inverse of "n" modulo
|
|
2^BITS_PER_MP_LIMB, ie. so that inv*n == 1 mod 2^BITS_PER_MP_LIMB.
|
|
"n" must be odd (otherwise such an inverse doesn't exist).
|
|
|
|
This is not to be confused with invert_limb(), which is completely
|
|
different.
|
|
|
|
The table lookup gives an inverse with the low 8 bits valid, and each
|
|
multiply step doubles the number of bits. See Jebelean's exact division
|
|
paper, end of section 4 (reference in gmp.texi). */
|
|
|
|
#define modlimb_invert_table __gmp_modlimb_invert_table
|
|
extern const unsigned char modlimb_invert_table[128];
|
|
|
|
#if BITS_PER_MP_LIMB <= 32
|
|
#define modlimb_invert(inv,n) \
|
|
do { \
|
|
mp_limb_t __n = (n); \
|
|
mp_limb_t __inv; \
|
|
ASSERT ((__n & 1) == 1); \
|
|
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
|
|
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \
|
|
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \
|
|
ASSERT (__inv * __n == 1); \
|
|
(inv) = __inv; \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if BITS_PER_MP_LIMB > 32 && BITS_PER_MP_LIMB <= 64
|
|
#define modlimb_invert(inv,n) \
|
|
do { \
|
|
mp_limb_t __n = (n); \
|
|
mp_limb_t __inv; \
|
|
ASSERT ((__n & 1) == 1); \
|
|
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
|
|
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \
|
|
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \
|
|
__inv = 2 * __inv - __inv * __inv * __n; /* 64 */ \
|
|
ASSERT (__inv * __n == 1); \
|
|
(inv) = __inv; \
|
|
} while (0)
|
|
#endif
|
|
|
|
|
|
/* The `mode' attribute was introduced in GCC 2.2, but we can only distinguish
|
|
between GCC 2 releases from 2.5, since __GNUC_MINOR__ wasn't introduced
|
|
until then. */
|
|
#if (__GNUC__ - 0 > 2 || defined (__GNUC_MINOR__)) && ! defined (__APPLE_CC__)
|
|
/* Define stuff for longlong.h. */
|
|
typedef unsigned int UQItype __attribute__ ((mode (QI)));
|
|
typedef int SItype __attribute__ ((mode (SI)));
|
|
typedef unsigned int USItype __attribute__ ((mode (SI)));
|
|
typedef int DItype __attribute__ ((mode (DI)));
|
|
typedef unsigned int UDItype __attribute__ ((mode (DI)));
|
|
#else
|
|
typedef unsigned char UQItype;
|
|
typedef long SItype;
|
|
typedef unsigned long USItype;
|
|
#if defined _LONGLONG || defined _LONG_LONG_LIMB
|
|
typedef long long int DItype;
|
|
typedef unsigned long long int UDItype;
|
|
#else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */
|
|
typedef long int DItype;
|
|
typedef unsigned long int UDItype;
|
|
#endif
|
|
#endif
|
|
|
|
typedef mp_limb_t UWtype;
|
|
typedef unsigned int UHWtype;
|
|
#define W_TYPE_SIZE BITS_PER_MP_LIMB
|
|
|
|
/* Define ieee_double_extract and _GMP_IEEE_FLOATS. */
|
|
|
|
#if (defined (__arm__) && (defined (__ARMWEL__) || defined (__linux__)))
|
|
/* Special case for little endian ARM since floats remain in big-endian. */
|
|
#define _GMP_IEEE_FLOATS 1
|
|
union ieee_double_extract
|
|
{
|
|
struct
|
|
{
|
|
unsigned int manh:20;
|
|
unsigned int exp:11;
|
|
unsigned int sig:1;
|
|
unsigned int manl:32;
|
|
} s;
|
|
double d;
|
|
};
|
|
#else
|
|
#if defined (_LITTLE_ENDIAN) || defined (__LITTLE_ENDIAN__) \
|
|
|| defined (__alpha) \
|
|
|| defined (__clipper__) \
|
|
|| defined (__cris) \
|
|
|| defined (__i386__) \
|
|
|| defined (__i860__) \
|
|
|| defined (__i960__) \
|
|
|| defined (MIPSEL) || defined (_MIPSEL) \
|
|
|| defined (__ns32000__) \
|
|
|| defined (__WINNT) || defined (_WIN32)
|
|
#define _GMP_IEEE_FLOATS 1
|
|
union ieee_double_extract
|
|
{
|
|
struct
|
|
{
|
|
unsigned int manl:32;
|
|
unsigned int manh:20;
|
|
unsigned int exp:11;
|
|
unsigned int sig:1;
|
|
} s;
|
|
double d;
|
|
};
|
|
#else /* Need this as an #else since the tests aren't made exclusive. */
|
|
#if defined (_BIG_ENDIAN) || defined (__BIG_ENDIAN__) \
|
|
|| defined (__a29k__) || defined (_AM29K) \
|
|
|| defined (__arm__) \
|
|
|| (defined (__convex__) && defined (_IEEE_FLOAT_)) \
|
|
|| defined (_CRAYMPP) \
|
|
|| defined (__i370__) || defined (__mvs__) \
|
|
|| defined (__mc68000__) || defined (__mc68020__) || defined (__m68k__)\
|
|
|| defined(mc68020) \
|
|
|| defined (__m88000__) \
|
|
|| defined (MIPSEB) || defined (_MIPSEB) \
|
|
|| defined (__hppa) || defined (__hppa__) \
|
|
|| defined (__pyr__) \
|
|
|| defined (__ibm032__) \
|
|
|| defined (_IBMR2) || defined (_ARCH_PPC) \
|
|
|| defined (__sh__) \
|
|
|| defined (__sparc) || defined (sparc) \
|
|
|| defined (__we32k__)
|
|
#define _GMP_IEEE_FLOATS 1
|
|
union ieee_double_extract
|
|
{
|
|
struct
|
|
{
|
|
unsigned int sig:1;
|
|
unsigned int exp:11;
|
|
unsigned int manh:20;
|
|
unsigned int manl:32;
|
|
} s;
|
|
double d;
|
|
};
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
/* Using "(2.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1)))" doesn't work on
|
|
SunOS 4.1.4 native /usr/ucb/cc (K&R), it comes out as -4294967296.0,
|
|
presumably due to treating the mp_limb_t constant as signed rather than
|
|
unsigned. */
|
|
#define MP_BASE_AS_DOUBLE (4.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 2)))
|
|
#if BITS_PER_MP_LIMB == 64
|
|
#define LIMBS_PER_DOUBLE 2
|
|
#else
|
|
#define LIMBS_PER_DOUBLE 3
|
|
#endif
|
|
|
|
double __gmp_scale2 _PROTO ((double, int));
|
|
int __gmp_extract_double _PROTO ((mp_ptr, double));
|
|
|
|
extern int __gmp_junk;
|
|
extern const int __gmp_0;
|
|
#define GMP_ERROR(code) (gmp_errno |= (code), __gmp_junk = 10/__gmp_0)
|
|
#define DIVIDE_BY_ZERO GMP_ERROR(GMP_ERROR_DIVISION_BY_ZERO)
|
|
#define SQRT_OF_NEGATIVE GMP_ERROR(GMP_ERROR_SQRT_OF_NEGATIVE)
|
|
|
|
#if defined _LONG_LONG_LIMB
|
|
#if defined (__STDC__)
|
|
#define CNST_LIMB(C) C##LL
|
|
#else
|
|
#define CNST_LIMB(C) C/**/LL
|
|
#endif
|
|
#else /* not _LONG_LONG_LIMB */
|
|
#if defined (__STDC__)
|
|
#define CNST_LIMB(C) C##L
|
|
#else
|
|
#define CNST_LIMB(C) C/**/L
|
|
#endif
|
|
#endif /* _LONG_LONG_LIMB */
|
|
|
|
/*** Stuff used by mpn/generic/prefsqr.c and mpn/generic/next_prime.c ***/
|
|
#if BITS_PER_MP_LIMB == 32
|
|
#define PP 0xC0CFD797L /* 3 x 5 x 7 x 11 x 13 x ... x 29 */
|
|
#define PP_INVERTED 0x53E5645CL
|
|
#define PP_MAXPRIME 29
|
|
#define PP_MASK 0x208A28A8L
|
|
#endif
|
|
|
|
#if BITS_PER_MP_LIMB == 64
|
|
#define PP CNST_LIMB(0xE221F97C30E94E1D) /* 3 x 5 x 7 x 11 x 13 x ... x 53 */
|
|
#define PP_INVERTED CNST_LIMB(0x21CFE6CFC938B36B)
|
|
#define PP_MAXPRIME 53
|
|
#define PP_MASK CNST_LIMB(0x208A20A08A28A8)
|
|
#endif
|
|
|
|
|
|
/* BIT1 means a result value in bit 1 (second least significant bit), with a
|
|
zero bit representing +1 and a one bit representing -1. Bits other than
|
|
bit 1 are garbage.
|
|
|
|
JACOBI_TWOS_U_BIT1 and JACOBI_RECIP_UU_BIT1 are used in mpn_jacobi_base
|
|
and their speed is important. Expressions are used rather than
|
|
conditionals to accumulate sign changes, which effectively means XORs
|
|
instead of conditional JUMPs. */
|
|
|
|
/* (a/0), with a signed; is 1 if a=+/-1, 0 otherwise */
|
|
#define JACOBI_S0(a) \
|
|
(((a) == 1) | ((a) == -1))
|
|
|
|
/* (a/0), with a unsigned; is 1 if a=+/-1, 0 otherwise */
|
|
#define JACOBI_U0(a) \
|
|
((a) == 1)
|
|
|
|
/* (a/0), with a an mpz_t; is 1 if a=+/-1, 0 otherwise
|
|
An mpz_t always has at least one limb of allocated space, so the fetch of
|
|
the low limb is valid. */
|
|
#define JACOBI_Z0(a) \
|
|
(((SIZ(a) == 1) | (SIZ(a) == -1)) & (PTR(a)[0] == 1))
|
|
|
|
/* Convert a bit1 to +1 or -1. */
|
|
#define JACOBI_BIT1_TO_PN(result_bit1) \
|
|
(1 - ((result_bit1) & 2))
|
|
|
|
/* (2/b), with b unsigned and odd;
|
|
is (-1)^((b^2-1)/8) which is 1 if b==1,7mod8 or -1 if b==3,5mod8 and
|
|
hence obtained from (b>>1)^b */
|
|
#define JACOBI_TWO_U_BIT1(b) \
|
|
(ASSERT (b & 1), (((b) >> 1) ^ (b)))
|
|
|
|
/* (2/b)^twos, with b unsigned and odd */
|
|
#define JACOBI_TWOS_U_BIT1(twos, b) \
|
|
(((twos) << 1) & JACOBI_TWO_U_BIT1 (b))
|
|
|
|
/* (2/b)^twos, with b unsigned and odd */
|
|
#define JACOBI_TWOS_U(twos, b) \
|
|
(JACOBI_BIT1_TO_PN (JACOBI_TWOS_U_BIT1 (twos, b)))
|
|
|
|
/* (a/b) effect due to sign of a: signed/unsigned, b odd;
|
|
is (-1)^((b-1)/2) if a<0, or +1 if a>=0 */
|
|
#define JACOBI_ASGN_SU_BIT1(a, b) \
|
|
((((a) < 0) << 1) & (b))
|
|
|
|
/* (a/b) effect due to sign of b: signed/mpz;
|
|
is -1 if a and b both negative, +1 otherwise */
|
|
#define JACOBI_BSGN_SZ_BIT1(a, b) \
|
|
((((a) < 0) & (SIZ(b) < 0)) << 1)
|
|
|
|
/* (a/b) effect due to sign of b: mpz/signed */
|
|
#define JACOBI_BSGN_ZS_BIT1(a, b) \
|
|
JACOBI_BSGN_SZ_BIT1(b, a)
|
|
|
|
/* (a/b) reciprocity to switch to (b/a), a,b both unsigned and odd.
|
|
Is (-1)^((a-1)*(b-1)/4), which means +1 if either a,b==1mod4 or -1 if
|
|
both a,b==3mod4, achieved in bit 1 by a&b. No ASSERT()s about a,b odd
|
|
because this is used in a couple of places with only bit 1 of a or b
|
|
valid. */
|
|
#define JACOBI_RECIP_UU_BIT1(a, b) \
|
|
((a) & (b))
|
|
|
|
|
|
/* For testing and debugging. */
|
|
#define MPZ_CHECK_FORMAT(z) \
|
|
(ASSERT_ALWAYS (SIZ(z) == 0 || PTR(z)[ABSIZ(z) - 1] != 0), \
|
|
ASSERT_ALWAYS (ALLOC(z) >= ABSIZ(z)))
|
|
#define MPZ_PROVOKE_REALLOC(z) \
|
|
do { ALLOC(z) = ABSIZ(z); } while (0)
|
|
|
|
|
|
#if TUNE_PROGRAM_BUILD
|
|
/* Some extras wanted when recompiling some .c files for use by the tune
|
|
program. Not part of a normal build. */
|
|
|
|
extern mp_size_t mul_threshold[];
|
|
extern mp_size_t fft_modf_mul_threshold;
|
|
extern mp_size_t sqr_threshold[];
|
|
extern mp_size_t fft_modf_sqr_threshold;
|
|
extern mp_size_t bz_threshold[];
|
|
extern mp_size_t fib_threshold[];
|
|
extern mp_size_t powm_threshold[];
|
|
extern mp_size_t gcd_accel_threshold[];
|
|
extern mp_size_t gcdext_threshold[];
|
|
|
|
#undef KARATSUBA_MUL_THRESHOLD
|
|
#undef TOOM3_MUL_THRESHOLD
|
|
#undef FFT_MUL_TABLE
|
|
#undef FFT_MUL_THRESHOLD
|
|
#undef FFT_MODF_MUL_THRESHOLD
|
|
#undef KARATSUBA_SQR_THRESHOLD
|
|
#undef TOOM3_SQR_THRESHOLD
|
|
#undef FFT_SQR_TABLE
|
|
#undef FFT_SQR_THRESHOLD
|
|
#undef FFT_MODF_SQR_THRESHOLD
|
|
#undef BZ_THRESHOLD
|
|
#undef FIB_THRESHOLD
|
|
#undef POWM_THRESHOLD
|
|
#undef GCD_ACCEL_THRESHOLD
|
|
#undef GCDEXT_THRESHOLD
|
|
|
|
#define KARATSUBA_MUL_THRESHOLD mul_threshold[0]
|
|
#define TOOM3_MUL_THRESHOLD mul_threshold[1]
|
|
#define FFT_MUL_TABLE 0
|
|
#define FFT_MUL_THRESHOLD mul_threshold[2]
|
|
#define FFT_MODF_MUL_THRESHOLD fft_modf_mul_threshold
|
|
#define KARATSUBA_SQR_THRESHOLD sqr_threshold[0]
|
|
#define TOOM3_SQR_THRESHOLD sqr_threshold[1]
|
|
#define FFT_SQR_TABLE 0
|
|
#define FFT_SQR_THRESHOLD sqr_threshold[2]
|
|
#define FFT_MODF_SQR_THRESHOLD fft_modf_sqr_threshold
|
|
#define BZ_THRESHOLD bz_threshold[0]
|
|
#define FIB_THRESHOLD fib_threshold[0]
|
|
#define POWM_THRESHOLD powm_threshold[0]
|
|
#define GCD_ACCEL_THRESHOLD gcd_accel_threshold[0]
|
|
#define GCDEXT_THRESHOLD gcdext_threshold[0]
|
|
|
|
#define TOOM3_MUL_THRESHOLD_LIMIT 700
|
|
|
|
#undef FFT_TABLE_ATTRS
|
|
#define FFT_TABLE_ATTRS
|
|
extern mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE];
|
|
|
|
#endif /* TUNE_PROGRAM_BUILD */
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|