macssh/gmp/demos/pexpr.c

1207 lines
27 KiB
C
Executable File

/* Program for computing integer expressions using the GNU Multiple Precision
Arithmetic Library.
Copyright (C) 1997, 1999, 2000 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA. */
/* This expressions evaluator works by building an expression tree (using a
recursive descent parser) which is then evaluated. The expression tree is
useful since we want to optimize certain expressions (like a^b % c).
Usage: pexpr [options] expr ...
(Assuming you called the executable `pexpr' of course.)
Command line options:
-b print output in binary
-o print output in octal
-d print output in decimal (the default)
-x print output in hexadecimal
-<NUM> print output in base NUM
-t print timing information
-html output html
-nosplit do not split long lines each 60th digit
*/
/* Define LIMIT_RESOURCE_USAGE if you want to make sure the program doesn't
use up extensive resources (cpu, memory). Useful for the GMP demo on the
GMP web site, since we cannot load the server too much. */
#ifdef LIMIT_RESOURCE_USAGE
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#endif
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>
#include <signal.h>
#include <ctype.h>
#include "gmp.h"
/* GMP version 1.x compatibility. */
#if ! (__GNU_MP_VERSION >= 2)
typedef MP_INT __mpz_struct;
typedef __mpz_struct mpz_t[1];
typedef __mpz_struct *mpz_ptr;
#define mpz_fdiv_q mpz_div
#define mpz_fdiv_r mpz_mod
#define mpz_tdiv_q_2exp mpz_div_2exp
#define mpz_sgn(Z) ((Z)->size < 0 ? -1 : (Z)->size > 0)
#endif
/* GMP version 2.0 compatibility. */
#if ! (__GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1)
#define mpz_swap(a,b) \
do { __mpz_struct __t; __t = *a; *a = *b; *b = __t;} while (0)
#endif
jmp_buf errjmpbuf;
enum op_t {NOP, LIT, NEG, NOT, PLUS, MINUS, MULT, DIV, MOD, REM, INVMOD, POW,
AND, IOR, XOR, SLL, SRA, POPCNT, HAMDIST, GCD, LCM, SQRT, ROOT, FAC,
LOG, LOG2, FERMAT, MERSENNE, FIBONACCI};
/* Type for the expression tree. */
struct expr
{
enum op_t op;
union
{
struct {struct expr *lhs, *rhs;} ops;
mpz_t val;
} operands;
};
typedef struct expr *expr_t;
void cleanup_and_exit (int);
char *skipspace (char *);
void makeexp (expr_t *, enum op_t, expr_t, expr_t);
void free_expr (expr_t);
char *expr (char *, expr_t *);
char *term (char *, expr_t *);
char *power (char *, expr_t *);
char *factor (char *, expr_t *);
int match (char *, char *);
int matchp (char *, char *);
int cputime (void);
void mpz_eval_expr (mpz_ptr, expr_t);
void mpz_eval_mod_expr (mpz_ptr, expr_t, mpz_ptr);
char *error;
int flag_print = 1;
int print_timing = 0;
int flag_html = 0;
int flag_splitup_output = 0;
char *newline = "";
#ifdef _AIX
#define sigaltstack sigstack
#endif
#if !defined(_WIN32) && !defined(__DJGPP__)
void
setup_error_handler ()
{
struct sigaction act;
struct sigaltstack sigstk;
/* Set up a stack for signal handling. A typical cause of error is stack
overflow, and in such situation a signal can not be delivered on the
overflown stack. */
sigstk.ss_sp = malloc (SIGSTKSZ);
#ifndef _AIX
sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
#endif /* ! _AIX */
#ifndef _UNICOS
if (sigaltstack (&sigstk, 0) < 0)
perror("sigaltstack");
#endif
/* Initialize structure for sigaction (called below). */
act.sa_handler = cleanup_and_exit;
sigemptyset (&(act.sa_mask));
act.sa_flags = SA_ONSTACK;
#ifdef LIMIT_RESOURCE_USAGE
{
struct rlimit limit;
limit.rlim_cur = limit.rlim_max = 0;
setrlimit (RLIMIT_CORE, &limit);
limit.rlim_cur = 3;
limit.rlim_max = 4;
setrlimit (RLIMIT_CPU, &limit);
limit.rlim_cur = limit.rlim_max = 4 * 1024 * 1024;
setrlimit (RLIMIT_DATA, &limit);
getrlimit (RLIMIT_STACK, &limit);
limit.rlim_cur = 1 * 1024 * 1024;
setrlimit (RLIMIT_STACK, &limit);
sigaction (SIGXCPU, &act, 0);
}
#endif /* LIMIT_RESOURCE_USAGE */
sigaction (SIGILL, &act, 0);
sigaction (SIGSEGV, &act, 0);
sigaction (SIGBUS, &act, 0);
sigaction (SIGFPE, &act, 0);
}
#endif /* ! _WIN32 && ! __DJGPP__ */
main (int argc, char **argv)
{
struct expr *e;
int i;
mpz_t r;
int errcode = 0;
char *str;
int base = 10;
#if !defined(_WIN32) && !defined(__DJGPP__)
setup_error_handler ();
#endif
mpz_init (r);
while (argc > 1 && argv[1][0] == '-')
{
char *arg = argv[1];
if (arg[1] >= '0' && arg[1] <= '9')
break;
if (arg[1] == 't')
print_timing = 1;
else if (arg[1] == 'b' && arg[2] >= '0' && arg[2] <= '9')
{
base = atoi (arg + 2);
if (base < 2 || base > 36)
{
fprintf (stderr, "error: invalid output base\n");
exit (-1);
}
}
else if (arg[1] == 'b' && arg[2] == 0)
base = 2;
else if (arg[1] == 'x' && arg[2] == 0)
base = 16;
else if (arg[1] == 'o' && arg[2] == 0)
base = 8;
else if (arg[1] == 'd' && arg[2] == 0)
base = 10;
else if (strcmp (arg, "-html") == 0)
{
flag_html = 1;
newline = "<BR>";
}
else if (strcmp (arg, "-split") == 0)
{
flag_splitup_output = 1;
}
else if (strcmp (arg, "-noprint") == 0)
{
flag_print = 0;
}
else
{
fprintf (stderr, "error: unknown option `%s'\n", arg);
exit (-1);
}
argv++;
argc--;
}
for (i = 1; i < argc; i++)
{
int s;
int jmpval;
/* Set up error handler for parsing expression. */
jmpval = setjmp (errjmpbuf);
if (jmpval != 0)
{
fprintf (stderr, "error: %s%s\n", error, newline);
fprintf (stderr, " %s%s\n", argv[i], newline);
if (! flag_html)
{
/* ??? Dunno how to align expression position with arrow in
HTML ??? */
fprintf (stderr, " ");
for (s = jmpval - (long) argv[i]; --s >= 0; )
putc (' ', stderr);
fprintf (stderr, "^\n");
}
errcode |= 1;
continue;
}
str = expr (argv[i], &e);
if (str[0] != 0)
{
fprintf (stderr,
"error: garbage where end of expression expected%s\n",
newline);
fprintf (stderr, " %s%s\n", argv[i], newline);
if (! flag_html)
{
/* ??? Dunno how to align expression position with arrow in
HTML ??? */
fprintf (stderr, " ");
for (s = str - argv[i]; --s; )
putc (' ', stderr);
fprintf (stderr, "^\n");
}
errcode |= 1;
free_expr (e);
continue;
}
/* Set up error handler for evaluating expression. */
if (setjmp (errjmpbuf))
{
fprintf (stderr, "error: %s%s\n", error, newline);
fprintf (stderr, " %s%s\n", argv[i], newline);
if (! flag_html)
{
/* ??? Dunno how to align expression position with arrow in
HTML ??? */
fprintf (stderr, " ");
for (s = str - argv[i]; --s >= 0; )
putc (' ', stderr);
fprintf (stderr, "^\n");
}
errcode |= 2;
continue;
}
{
int t0;
if (print_timing)
t0 = cputime ();
mpz_eval_expr (r, e);
if (print_timing)
printf ("computation took %d ms%s\n", cputime () - t0, newline);
}
if (flag_print)
{
size_t out_len;
char *tmp, *s;
int t0;
out_len = mpz_sizeinbase (r, base) + 1;
tmp = malloc (out_len);
if (print_timing)
t0 = cputime ();
if (print_timing)
/* Print first half of message... */
printf ("output conversion ");
mpz_get_str (tmp, -base, r);
if (print_timing)
/* ...print 2nd half of message unless we caught a time limit
and therefore longjmp'ed */
printf ("took %d ms%s\n", cputime () - t0, newline);
out_len = strlen (tmp);
if (flag_splitup_output)
{
for (s = tmp; out_len > 60; s += 60)
{
fwrite (s, 1, 60, stdout);
printf ("%s\n", newline);
out_len -= 60;
}
fwrite (s, 1, out_len, stdout);
}
else
{
fwrite (tmp, 1, out_len, stdout);
}
free (tmp);
printf ("%s\n", newline);
}
else
{
printf ("result is approximately %ld digits%s\n",
(long) mpz_sizeinbase (r, 10), newline);
}
free_expr (e);
}
exit (errcode);
}
char *
expr (char *str, expr_t *e)
{
expr_t e2;
str = skipspace (str);
if (str[0] == '+')
{
str = term (str + 1, e);
}
else if (str[0] == '-')
{
str = term (str + 1, e);
makeexp (e, NEG, *e, NULL);
}
else if (str[0] == '~')
{
str = term (str + 1, e);
makeexp (e, NOT, *e, NULL);
}
else
{
str = term (str, e);
}
for (;;)
{
str = skipspace (str);
switch (str[0])
{
case 'p':
if (match ("plus", str))
{
str = term (str + 4, &e2);
makeexp (e, PLUS, *e, e2);
}
else
return str;
break;
case 'm':
if (match ("minus", str))
{
str = term (str + 5, &e2);
makeexp (e, MINUS, *e, e2);
}
else
return str;
break;
case '+':
str = term (str + 1, &e2);
makeexp (e, PLUS, *e, e2);
break;
case '-':
str = term (str + 1, &e2);
makeexp (e, MINUS, *e, e2);
break;
default:
return str;
}
}
}
char *
term (char *str, expr_t *e)
{
expr_t e2;
str = power (str, e);
for (;;)
{
str = skipspace (str);
switch (str[0])
{
case 'm':
if (match ("mul", str))
{
str = power (str + 3, &e2);
makeexp (e, MULT, *e, e2);
break;
}
if (match ("mod", str))
{
str = power (str + 3, &e2);
makeexp (e, MOD, *e, e2);
break;
}
return str;
case 'd':
if (match ("div", str))
{
str = power (str + 3, &e2);
makeexp (e, DIV, *e, e2);
break;
}
return str;
case 'r':
if (match ("rem", str))
{
str = power (str + 3, &e2);
makeexp (e, REM, *e, e2);
break;
}
return str;
case 'i':
if (match ("invmod", str))
{
str = power (str + 6, &e2);
makeexp (e, REM, *e, e2);
break;
}
return str;
case 't':
if (match ("times", str))
{
str = power (str + 5, &e2);
makeexp (e, MULT, *e, e2);
break;
}
if (match ("thru", str))
{
str = power (str + 4, &e2);
makeexp (e, DIV, *e, e2);
break;
}
if (match ("through", str))
{
str = power (str + 7, &e2);
makeexp (e, DIV, *e, e2);
break;
}
return str;
case '*':
str = power (str + 1, &e2);
makeexp (e, MULT, *e, e2);
break;
case '/':
str = power (str + 1, &e2);
makeexp (e, DIV, *e, e2);
break;
case '%':
str = power (str + 1, &e2);
makeexp (e, MOD, *e, e2);
break;
default:
return str;
}
}
}
char *
power (char *str, expr_t *e)
{
expr_t e2;
str = factor (str, e);
while (str[0] == '!')
{
str++;
makeexp (e, FAC, *e, NULL);
}
str = skipspace (str);
if (str[0] == '^')
{
str = power (str + 1, &e2);
makeexp (e, POW, *e, e2);
}
return str;
}
int
match (char *s, char *str)
{
char *ostr = str;
int i;
for (i = 0; s[i] != 0; i++)
{
if (str[i] != s[i])
return 0;
}
str = skipspace (str + i);
return str - ostr;
}
int
matchp (char *s, char *str)
{
char *ostr = str;
int i;
for (i = 0; s[i] != 0; i++)
{
if (str[i] != s[i])
return 0;
}
str = skipspace (str + i);
if (str[0] == '(')
return str - ostr + 1;
return 0;
}
struct functions
{
char *spelling;
enum op_t op;
int arity; /* 1 or 2 means real arity; 0 means arbitrary. */
};
struct functions fns[] =
{
{"sqrt", SQRT, 1},
#if __GNU_MP_VERSION >= 2
{"root", ROOT, 2},
{"popc", POPCNT, 1},
#endif
{"gcd", GCD, 0},
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
{"lcm", LCM, 0},
#endif
{"and", AND, 0},
{"ior", IOR, 0},
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
{"xor", XOR, 0},
#endif
{"plus", PLUS, 0},
{"minus", MINUS, 2},
{"mul", MULT, 0},
{"div", DIV, 2},
{"mod", MOD, 2},
{"rem", REM, 2},
#if __GNU_MP_VERSION >= 2
{"invmod", INVMOD, 2},
#endif
{"log", LOG, 2},
{"log2", LOG2, 1},
{"F", FERMAT, 1},
{"M", MERSENNE, 1},
{"fib", FIBONACCI, 1},
{"Fib", FIBONACCI, 1},
{"", NOP, 0}
};
char *
factor (char *str, expr_t *e)
{
expr_t e1, e2;
str = skipspace (str);
if (isalpha (str[0]))
{
int i;
int cnt;
for (i = 0; fns[i].op != NOP; i++)
{
if (fns[i].arity == 1)
{
cnt = matchp (fns[i].spelling, str);
if (cnt != 0)
{
str = expr (str + cnt, &e1);
str = skipspace (str);
if (str[0] != ')')
{
error = "expected `)'";
longjmp (errjmpbuf, (int) (long) str);
}
makeexp (e, fns[i].op, e1, NULL);
return str + 1;
}
}
}
for (i = 0; fns[i].op != NOP; i++)
{
if (fns[i].arity != 1)
{
cnt = matchp (fns[i].spelling, str);
if (cnt != 0)
{
str = expr (str + cnt, &e1);
str = skipspace (str);
if (str[0] != ',')
{
error = "expected `,' and another operand";
longjmp (errjmpbuf, (int) (long) str);
}
str = skipspace (str + 1);
str = expr (str, &e2);
str = skipspace (str);
if (fns[i].arity == 0)
{
while (str[0] == ',')
{
makeexp (&e1, fns[i].op, e1, e2);
str = skipspace (str + 1);
str = expr (str, &e2);
str = skipspace (str);
}
}
if (str[0] != ')')
{
error = "expected `)'";
longjmp (errjmpbuf, (int) (long) str);
}
makeexp (e, fns[i].op, e1, e2);
return str + 1;
}
}
}
}
if (str[0] == '(')
{
str = expr (str + 1, e);
str = skipspace (str);
if (str[0] != ')')
{
error = "expected `)'";
longjmp (errjmpbuf, (int) (long) str);
}
str++;
}
else if (str[0] >= '0' && str[0] <= '9')
{
expr_t res;
char *s, *sc;
res = malloc (sizeof (struct expr));
res -> op = LIT;
mpz_init (res->operands.val);
s = str;
while (isalnum (str[0]))
str++;
sc = malloc (str - s + 1);
memcpy (sc, s, str - s);
sc[str - s] = 0;
mpz_set_str (res->operands.val, sc, 0);
*e = res;
free (sc);
}
else
{
error = "operand expected";
longjmp (errjmpbuf, (int) (long) str);
}
return str;
}
char *
skipspace (char *str)
{
while (str[0] == ' ')
str++;
return str;
}
/* Make a new expression with operation OP and right hand side
RHS and left hand side lhs. Put the result in R. */
void
makeexp (expr_t *r, enum op_t op, expr_t lhs, expr_t rhs)
{
expr_t res;
res = malloc (sizeof (struct expr));
res -> op = op;
res -> operands.ops.lhs = lhs;
res -> operands.ops.rhs = rhs;
*r = res;
return;
}
/* Free the memory used by expression E. */
void
free_expr (expr_t e)
{
if (e->op != LIT)
{
free_expr (e->operands.ops.lhs);
if (e->operands.ops.rhs != NULL)
free_expr (e->operands.ops.rhs);
}
else
{
mpz_clear (e->operands.val);
}
}
/* Evaluate the expression E and put the result in R. */
void
mpz_eval_expr (mpz_ptr r, expr_t e)
{
mpz_t lhs, rhs;
switch (e->op)
{
case LIT:
mpz_set (r, e->operands.val);
return;
case PLUS:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_add (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
case MINUS:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_sub (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
case MULT:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_mul (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
case DIV:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_fdiv_q (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
case MOD:
mpz_init (rhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_abs (rhs, rhs);
mpz_eval_mod_expr (r, e->operands.ops.lhs, rhs);
mpz_clear (rhs);
return;
case REM:
/* Check if lhs operand is POW expression and optimize for that case. */
if (e->operands.ops.lhs->op == POW)
{
mpz_t powlhs, powrhs;
mpz_init (powlhs);
mpz_init (powrhs);
mpz_init (rhs);
mpz_eval_expr (powlhs, e->operands.ops.lhs->operands.ops.lhs);
mpz_eval_expr (powrhs, e->operands.ops.lhs->operands.ops.rhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_powm (r, powlhs, powrhs, rhs);
if (mpz_cmp_si (rhs, 0L) < 0)
mpz_neg (r, r);
mpz_clear (powlhs);
mpz_clear (powrhs);
mpz_clear (rhs);
return;
}
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_fdiv_r (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#if __GNU_MP_VERSION >= 2
case INVMOD:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_invert (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#endif
case POW:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
if (mpz_cmp_si (rhs, 0L) == 0)
/* x^0 is 1 */
mpz_set_ui (r, 1L);
else if (mpz_cmp_si (lhs, 0L) == 0)
/* 0^y (where y != 0) is 0 */
mpz_set_ui (r, 0L);
else if (mpz_cmp_ui (lhs, 1L) == 0)
/* 1^y is 1 */
mpz_set_ui (r, 1L);
else if (mpz_cmp_si (lhs, -1L) == 0)
/* (-1)^y just depends on whether y is even or odd */
mpz_set_si (r, (mpz_get_ui (rhs) & 1) ? -1L : 1L);
else if (mpz_cmp_si (rhs, 0L) < 0)
/* x^(-n) is 0 */
mpz_set_ui (r, 0L);
else
{
unsigned long int cnt;
unsigned long int y;
/* error if exponent does not fit into an unsigned long int. */
if (mpz_cmp_ui (rhs, ~(unsigned long int) 0) > 0)
goto pow_err;
y = mpz_get_ui (rhs);
/* x^y == (x/(2^c))^y * 2^(c*y) */
#if __GNU_MP_VERSION >= 2
cnt = mpz_scan1 (lhs, 0);
#else
cnt = 0;
#endif
if (cnt != 0)
{
if (y * cnt / cnt != y)
goto pow_err;
mpz_tdiv_q_2exp (lhs, lhs, cnt);
mpz_pow_ui (r, lhs, y);
mpz_mul_2exp (r, r, y * cnt);
}
else
mpz_pow_ui (r, lhs, y);
}
mpz_clear (lhs); mpz_clear (rhs);
return;
pow_err:
error = "result of `pow' operator too large";
mpz_clear (lhs); mpz_clear (rhs);
longjmp (errjmpbuf, 1);
case GCD:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_gcd (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
case LCM:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_lcm (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#endif
case AND:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_and (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
case IOR:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_ior (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
case XOR:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_xor (r, lhs, rhs);
mpz_clear (lhs); mpz_clear (rhs);
return;
#endif
case NEG:
mpz_eval_expr (r, e->operands.ops.lhs);
mpz_neg (r, r);
return;
case NOT:
mpz_eval_expr (r, e->operands.ops.lhs);
mpz_com (r, r);
return;
case SQRT:
mpz_init (lhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
if (mpz_sgn (lhs) < 0)
{
error = "cannot take square root of negative numbers";
mpz_clear (lhs);
longjmp (errjmpbuf, 1);
}
mpz_sqrt (r, lhs);
return;
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
case ROOT:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
if (mpz_sgn (rhs) <= 0)
{
error = "cannot take non-positive root orders";
mpz_clear (lhs); mpz_clear (rhs);
longjmp (errjmpbuf, 1);
}
if (mpz_sgn (lhs) < 0 && (mpz_get_ui (rhs) & 1) == 0)
{
error = "cannot take even root orders of negative numbers";
mpz_clear (lhs); mpz_clear (rhs);
longjmp (errjmpbuf, 1);
}
{
unsigned long int nth = mpz_get_ui (rhs);
if (mpz_cmp_ui (rhs, ~(unsigned long int) 0) > 0)
{
/* If we are asked to take an awfully large root order, cheat and
ask for the largest order we can pass to mpz_root. This saves
some error prone special cases. */
nth = ~(unsigned long int) 0;
}
mpz_root (r, lhs, nth);
}
mpz_clear (lhs); mpz_clear (rhs);
return;
#endif
case FAC:
mpz_eval_expr (r, e->operands.ops.lhs);
if (mpz_size (r) > 1)
{
error = "result of `!' operator too large";
longjmp (errjmpbuf, 1);
}
mpz_fac_ui (r, mpz_get_ui (r));
return;
#if __GNU_MP_VERSION >= 2
case POPCNT:
mpz_eval_expr (r, e->operands.ops.lhs);
{ unsigned long int cnt;
cnt = mpz_popcount (r);
mpz_set_ui (r, cnt);
}
return;
#endif
case LOG2:
mpz_eval_expr (r, e->operands.ops.lhs);
{ unsigned long int cnt;
if (mpz_sgn (r) <= 0)
{
error = "logarithm of non-positive number";
longjmp (errjmpbuf, 1);
}
cnt = mpz_sizeinbase (r, 2);
mpz_set_ui (r, cnt - 1);
}
return;
case LOG:
{ unsigned long int cnt;
mpz_init (lhs); mpz_init (rhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
mpz_eval_expr (rhs, e->operands.ops.rhs);
if (mpz_sgn (lhs) <= 0)
{
error = "logarithm of non-positive number";
mpz_clear (lhs); mpz_clear (rhs);
longjmp (errjmpbuf, 1);
}
if (mpz_cmp_ui (rhs, 256) >= 0)
{
error = "logarithm base too large";
mpz_clear (lhs); mpz_clear (rhs);
longjmp (errjmpbuf, 1);
}
cnt = mpz_sizeinbase (lhs, mpz_get_ui (rhs));
mpz_set_ui (r, cnt - 1);
mpz_clear (lhs); mpz_clear (rhs);
}
return;
case FERMAT:
{
unsigned long int t;
mpz_init (lhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
t = (unsigned long int) 1 << mpz_get_ui (lhs);
if (mpz_cmp_ui (lhs, ~(unsigned long int) 0) > 0 || t == 0)
{
error = "too large Mersenne number index";
mpz_clear (lhs);
longjmp (errjmpbuf, 1);
}
mpz_set_ui (r, 1);
mpz_mul_2exp (r, r, t);
mpz_add_ui (r, r, 1);
mpz_clear (lhs);
}
return;
case MERSENNE:
mpz_init (lhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
if (mpz_cmp_ui (lhs, ~(unsigned long int) 0) > 0)
{
error = "too large Mersenne number index";
mpz_clear (lhs);
longjmp (errjmpbuf, 1);
}
mpz_set_ui (r, 1);
mpz_mul_2exp (r, r, mpz_get_ui (lhs));
mpz_sub_ui (r, r, 1);
mpz_clear (lhs);
return;
case FIBONACCI:
{ mpz_t t;
unsigned long int n, i;
mpz_init (lhs);
mpz_eval_expr (lhs, e->operands.ops.lhs);
if (mpz_sgn (lhs) <= 0 || mpz_cmp_si (lhs, 1000000000) > 0)
{
error = "Fibonacci index out of range";
mpz_clear (lhs);
longjmp (errjmpbuf, 1);
}
n = mpz_get_ui (lhs);
mpz_clear (lhs);
#if __GNU_MP_VERSION > 2 || __GNU_MP_VERSION_MINOR >= 1
mpz_fib_ui (r, n);
#else
mpz_init_set_ui (t, 1);
mpz_set_ui (r, 1);
if (n <= 2)
mpz_set_ui (r, 1);
else
{
for (i = 3; i <= n; i++)
{
mpz_add (t, t, r);
mpz_swap (t, r);
}
}
mpz_clear (t);
#endif
}
return;
default:
abort ();
}
}
/* Evaluate the expression E modulo MOD and put the result in R. */
void
mpz_eval_mod_expr (mpz_ptr r, expr_t e, mpz_ptr mod)
{
mpz_t lhs, rhs;
switch (e->op)
{
case POW:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_mod_expr (lhs, e->operands.ops.lhs, mod);
mpz_eval_expr (rhs, e->operands.ops.rhs);
mpz_powm (r, lhs, rhs, mod);
mpz_clear (lhs); mpz_clear (rhs);
return;
case PLUS:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_mod_expr (lhs, e->operands.ops.lhs, mod);
mpz_eval_mod_expr (rhs, e->operands.ops.rhs, mod);
mpz_add (r, lhs, rhs);
if (mpz_cmp_si (r, 0L) < 0)
mpz_add (r, r, mod);
else if (mpz_cmp (r, mod) >= 0)
mpz_sub (r, r, mod);
mpz_clear (lhs); mpz_clear (rhs);
return;
case MINUS:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_mod_expr (lhs, e->operands.ops.lhs, mod);
mpz_eval_mod_expr (rhs, e->operands.ops.rhs, mod);
mpz_sub (r, lhs, rhs);
if (mpz_cmp_si (r, 0L) < 0)
mpz_add (r, r, mod);
else if (mpz_cmp (r, mod) >= 0)
mpz_sub (r, r, mod);
mpz_clear (lhs); mpz_clear (rhs);
return;
case MULT:
mpz_init (lhs); mpz_init (rhs);
mpz_eval_mod_expr (lhs, e->operands.ops.lhs, mod);
mpz_eval_mod_expr (rhs, e->operands.ops.rhs, mod);
mpz_mul (r, lhs, rhs);
mpz_mod (r, r, mod);
mpz_clear (lhs); mpz_clear (rhs);
return;
default:
mpz_init (lhs);
mpz_eval_expr (lhs, e);
mpz_mod (r, lhs, mod);
mpz_clear (lhs);
return;
}
}
void
cleanup_and_exit (int sig)
{
#ifdef LIMIT_RESOURCE_USAGE
if (sig == SIGXCPU)
printf ("expression took too long time to evaluate%s\n", newline);
else if (sig == SIGFPE)
printf ("divide by zero%s\n", newline);
else
#endif
printf ("expression required too much memory to evaluate%s\n", newline);
exit (-2);
}
/* Return user CPU time measured in milliseconds. */
#if defined (USG) || defined (__SVR4) || defined (_UNICOS) || defined (__hpux)
#include <time.h>
int
cputime ()
{
if (CLOCKS_PER_SEC < 100000)
return clock () * 1000 / CLOCKS_PER_SEC;
return clock () / (CLOCKS_PER_SEC / 1000);
}
#else
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
int
cputime ()
{
struct rusage rus;
getrusage (0, &rus);
return rus.ru_utime.tv_sec * 1000 + rus.ru_utime.tv_usec / 1000;
}
#endif