mirror of https://github.com/macssh/macssh.git
1320 lines
36 KiB
C
Executable File
1320 lines
36 KiB
C
Executable File
/* Shared speed subroutines. */
|
|
|
|
/*
|
|
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h> /* for qsort */
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#if 0
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
|
|
#include "gmp.h"
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
#include "speed.h"
|
|
|
|
/* Change this to "#define TRACE(x) x" to get traces. */
|
|
#define TRACE(x)
|
|
|
|
|
|
typedef int (*qsort_function_t) _PROTO ((const void *, const void *));
|
|
|
|
|
|
int speed_option_addrs = 0;
|
|
|
|
|
|
void
|
|
pentium_wbinvd(void)
|
|
{
|
|
#if 0
|
|
{
|
|
static int fd = -2;
|
|
|
|
if (fd == -2)
|
|
{
|
|
fd = open ("/dev/wbinvd", O_RDWR);
|
|
if (fd == -1)
|
|
perror ("open /dev/wbinvd");
|
|
}
|
|
|
|
if (fd != -1)
|
|
ioctl (fd, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
#define WBINVDSIZE 1024*1024*2
|
|
{
|
|
static char *p = NULL;
|
|
int i, sum;
|
|
|
|
if (p == NULL)
|
|
p = malloc (WBINVDSIZE);
|
|
|
|
#if 0
|
|
for (i = 0; i < WBINVDSIZE; i++)
|
|
p[i] = i & 0xFF;
|
|
#endif
|
|
|
|
sum = 0;
|
|
for (i = 0; i < WBINVDSIZE; i++)
|
|
sum += p[i];
|
|
|
|
mpn_cache_fill_dummy (sum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
double_cmp_ptr (const double *p, const double *q)
|
|
{
|
|
if (*p > *q) return 1;
|
|
if (*p < *q) return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Measure the speed of a given routine.
|
|
|
|
The routine is run with enough repetitions to make it take at least
|
|
speed_precision * speed_unittime. This aims to minimize the effects of a
|
|
limited accuracy time base and the overhead of the measuring itself.
|
|
|
|
Measurements are made looking for 4 results within TOLERANCE of each
|
|
other (or 3 for routines taking longer than 2 seconds). This aims to get
|
|
an accurate reading even if some runs are bloated by interrupts or task
|
|
switches or whatever.
|
|
|
|
The given (*fun)() is expected to run its function "s->reps" many times
|
|
and return the total elapsed time measured using speed_starttime() and
|
|
speed_endtime(). If the function doesn't support the given s->size or
|
|
s->r, -1.0 should be returned. See the various base routines below. */
|
|
|
|
double
|
|
speed_measure (double (*fun) _PROTO ((struct speed_params *s)),
|
|
struct speed_params *s)
|
|
{
|
|
#define TOLERANCE 1.005 /* 0.5% */
|
|
|
|
struct speed_params s_dummy;
|
|
int i, j, e;
|
|
double t[30];
|
|
double t_unsorted[30];
|
|
|
|
/* Use dummy parameters if caller doesn't provide any. Only a few special
|
|
"fun"s will cope with this, speed_noop() is one. */
|
|
if (s == NULL)
|
|
{
|
|
memset (&s_dummy, '\0', sizeof (s_dummy));
|
|
s = &s_dummy;
|
|
}
|
|
|
|
s->reps = 1;
|
|
s->time_divisor = 1.0;
|
|
for (i = 0; i < numberof (t); i++)
|
|
{
|
|
for (;;)
|
|
{
|
|
s->src_num = 0;
|
|
s->dst_num = 0;
|
|
|
|
t[i] = (*fun) (s);
|
|
t_unsorted[i] = t[i];
|
|
|
|
TRACE (printf("size=%ld reps=%u r=%d attempt=%d %.9f\n",
|
|
s->size, s->reps, s->r, i, t[i]));
|
|
|
|
if (t[i] == -1.0)
|
|
return -1.0;
|
|
|
|
if (t[i] >= speed_unittime * speed_precision)
|
|
break;
|
|
|
|
/* go to a value of reps to make t[i] >= precision */
|
|
s->reps = (unsigned) ceil (1.1 * s->reps
|
|
* speed_unittime * speed_precision
|
|
/ MAX (t[i], speed_unittime));
|
|
}
|
|
t[i] /= s->reps;
|
|
|
|
if (speed_precision == 0)
|
|
return t[i];
|
|
|
|
/* require 3 values within TOLERANCE when >= 2 secs, 4 when below */
|
|
if (t[0] >= 2.0)
|
|
e = 3;
|
|
else
|
|
e = 4;
|
|
|
|
/* Look for e many t[]'s within TOLERANCE of each other to consider a
|
|
valid measurement. Return smallest among them. */
|
|
if (i >= e)
|
|
{
|
|
qsort (t, i+1, sizeof(t[0]), (qsort_function_t) double_cmp_ptr);
|
|
for (j = e-1; j < i; j++)
|
|
if (t[j] <= t[j-e+1] * TOLERANCE)
|
|
return t[j-e+1] / s->time_divisor;
|
|
}
|
|
}
|
|
|
|
fprintf (stderr, "speed_measure() could not get %d results within %.1f%%\n",
|
|
e, (TOLERANCE-1.0)*100.0);
|
|
fprintf (stderr, " %.12f is about 0.5%%\n", t[0]*(TOLERANCE-1.0));
|
|
for (i = 0; i < numberof (t); i++)
|
|
fprintf (stderr, " %.09f\n", t_unsorted[i]);
|
|
|
|
return -1.0;
|
|
}
|
|
|
|
|
|
/* Read all of ptr,size to get it into the CPU memory cache.
|
|
|
|
A call to mpn_cache_fill_dummy() is used to make sure the compiler
|
|
doesn't optimize away the whole loop. Using "volatile mp_limb_t sum"
|
|
would work too, but the function call means we don't rely on every
|
|
compiler actually implementing volatile properly.
|
|
|
|
mpn_cache_fill_dummy() is in a separate source file to stop gcc thinking
|
|
it can inline it. */
|
|
|
|
void
|
|
mpn_cache_fill (mp_srcptr ptr, mp_size_t size)
|
|
{
|
|
mp_limb_t sum = 0;
|
|
mp_size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
sum += ptr[i];
|
|
|
|
mpn_cache_fill_dummy(sum);
|
|
}
|
|
|
|
|
|
void
|
|
mpn_cache_fill_write (mp_ptr ptr, mp_size_t size)
|
|
{
|
|
mpn_cache_fill (ptr, size);
|
|
|
|
#if 0
|
|
mpn_random (ptr, size);
|
|
#endif
|
|
|
|
#if 0
|
|
mp_size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
ptr[i] = i;
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
speed_operand_src (struct speed_params *s, mp_ptr ptr, mp_size_t size)
|
|
{
|
|
if (s->src_num >= numberof (s->src))
|
|
{
|
|
fprintf (stderr, "speed_operand_src: no room left in s->src[]\n");
|
|
abort ();
|
|
}
|
|
s->src[s->src_num].ptr = ptr;
|
|
s->src[s->src_num].size = size;
|
|
s->src_num++;
|
|
}
|
|
|
|
|
|
void
|
|
speed_operand_dst (struct speed_params *s, mp_ptr ptr, mp_size_t size)
|
|
{
|
|
if (s->dst_num >= numberof (s->dst))
|
|
{
|
|
fprintf (stderr, "speed_operand_dst: no room left in s->dst[]\n");
|
|
abort ();
|
|
}
|
|
s->dst[s->dst_num].ptr = ptr;
|
|
s->dst[s->dst_num].size = size;
|
|
s->dst_num++;
|
|
}
|
|
|
|
|
|
void
|
|
speed_cache_fill (struct speed_params *s)
|
|
{
|
|
static struct speed_params prev;
|
|
int i;
|
|
|
|
/* FIXME: need a better way to get the format string for a pointer */
|
|
|
|
if (speed_option_addrs)
|
|
{
|
|
int different;
|
|
|
|
different = (s->dst_num != prev.dst_num || s->src_num != prev.src_num);
|
|
for (i = 0; i < s->dst_num; i++)
|
|
different |= (s->dst[i].ptr != prev.dst[i].ptr);
|
|
for (i = 0; i < s->src_num; i++)
|
|
different |= (s->src[i].ptr != prev.src[i].ptr);
|
|
|
|
if (different)
|
|
{
|
|
if (s->dst_num != 0)
|
|
{
|
|
printf ("dst");
|
|
for (i = 0; i < s->dst_num; i++)
|
|
printf (" %08lX", (unsigned long) s->dst[i].ptr);
|
|
printf (" ");
|
|
}
|
|
|
|
if (s->src_num != 0)
|
|
{
|
|
printf ("src");
|
|
for (i = 0; i < s->src_num; i++)
|
|
printf (" %08lX", (unsigned long) s->src[i].ptr);
|
|
printf (" ");
|
|
}
|
|
printf (" (cf sp approx %08lX)\n", (unsigned long) &different);
|
|
|
|
}
|
|
|
|
memcpy (&prev, s, sizeof(prev));
|
|
}
|
|
|
|
switch (s->cache) {
|
|
case 0:
|
|
for (i = 0; i < s->dst_num; i++)
|
|
mpn_cache_fill_write (s->dst[i].ptr, s->dst[i].size);
|
|
for (i = 0; i < s->src_num; i++)
|
|
mpn_cache_fill (s->src[i].ptr, s->src[i].size);
|
|
break;
|
|
case 1:
|
|
pentium_wbinvd();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return p advanced to the next multiple of "align" bytes. "align" must be
|
|
a power of 2. Care is taken not to assume sizeof(int)==sizeof(pointer).
|
|
Using "unsigned long" avoids a warning on hpux. */
|
|
void *
|
|
align_pointer (void *p, size_t align)
|
|
{
|
|
unsigned long d;
|
|
d = ((unsigned long) p) & (align-1);
|
|
d = (d != 0 ? align-d : 0);
|
|
return (void *) (((char *) p) + d);
|
|
}
|
|
|
|
/* Note that memory allocated with this function can never be freed, because
|
|
the start address of the block allocated is discarded. */
|
|
void *
|
|
_mp_allocate_func_aligned (size_t bytes, size_t align)
|
|
{
|
|
return align_pointer ((*_mp_allocate_func) (bytes + align-1), align);
|
|
}
|
|
|
|
|
|
void *
|
|
_mp_allocate_or_reallocate (void *ptr, size_t oldsize, size_t newsize)
|
|
{
|
|
if (ptr == NULL)
|
|
return (*_mp_allocate_func) (newsize);
|
|
else
|
|
return (*_mp_reallocate_func) (ptr, oldsize, newsize);
|
|
}
|
|
|
|
|
|
/* Adjust ptr to align to CACHE_LINE_SIZE bytes plus "align" limbs. ptr
|
|
needs to have room for up to CACHE_LINE_SIZE-4 extra bytes. */
|
|
|
|
mp_ptr
|
|
speed_tmp_alloc_adjust (void *ptr, mp_size_t align)
|
|
{
|
|
/*
|
|
printf("%p %ld -> %p %X %X\n", ptr, align,
|
|
(mp_ptr) ptr
|
|
+ ((align - ((mp_size_t) ptr >> 2)) &
|
|
SPEED_TMP_ALLOC_ADJUST_MASK),
|
|
((mp_size_t) ptr >> 2) & SPEED_TMP_ALLOC_ADJUST_MASK,
|
|
SPEED_TMP_ALLOC_ADJUST_MASK);
|
|
*/
|
|
|
|
return (mp_ptr) ptr
|
|
+ ((align - ((mp_size_t) ptr >> 2)) & SPEED_TMP_ALLOC_ADJUST_MASK);
|
|
}
|
|
|
|
|
|
void
|
|
mpz_set_n (mpz_ptr z, mp_srcptr p, mp_size_t size)
|
|
{
|
|
ASSERT (size >= 0);
|
|
MPN_NORMALIZE (p, size);
|
|
MPZ_REALLOC (z, size);
|
|
MPN_COPY (PTR(z), p, size);
|
|
SIZ(z) = size;
|
|
}
|
|
|
|
|
|
/* Miscellanous options accepted by tune and speed programs under -o. */
|
|
|
|
void
|
|
speed_option_set (const char *s)
|
|
{
|
|
if (strcmp (s, "addrs") == 0) speed_option_addrs = 1;
|
|
else
|
|
{
|
|
printf ("Unrecognised -o option: %s\n", s);
|
|
exit (1);
|
|
}
|
|
}
|
|
|
|
|
|
/* The following are basic speed running routines for various gmp functions.
|
|
Many are very similar and use speed.h macros.
|
|
|
|
Each routine allocates it's own destination space for the result of the
|
|
function, because only it can know what the function needs.
|
|
|
|
speed_starttime() and speed_endtime() are put tight around the code to be
|
|
measured. Any setups are done outside the timed portion.
|
|
|
|
Each routine is responsible for its own cache priming.
|
|
speed_cache_fill() is a good way to do this, see examples in speed.h.
|
|
One cache priming possibility, for CPUs with write-allocate cache, and
|
|
functions that don't take too long, is to do one dummy call before timing
|
|
so as to cache everything that gets used. But speed_measure() runs a
|
|
routine at least twice and will take the smaller time, so this might not
|
|
be necessary.
|
|
|
|
Data alignment will be important, for source, destination and temporary
|
|
workspace. A routine can align its destination and workspace. Programs
|
|
using the routines will ensure s->xp and s->yp are aligned. Aligning
|
|
onto a CACHE_LINE_SIZE boundary is suggested. s->align_wp and
|
|
s->align_wp2 should be respected where it makes sense to do so.
|
|
SPEED_TMP_ALLOC_LIMBS is a good way to do this.
|
|
|
|
A loop of the following form can be expected to turn into good assembler
|
|
code on most CPUs, thereby minimizing overhead in the measurement. It
|
|
can always be assumed s->reps >= 1.
|
|
|
|
i = s->reps
|
|
do
|
|
foo();
|
|
while (--i != 0);
|
|
|
|
Additional parameters might be added to "struct speed_params" in the
|
|
future. Routines should ignore anything they don't use.
|
|
|
|
s->size can be used creatively, and s->xp and s->yp can be ignored. For
|
|
example, speed_mpz_fac_ui() uses s->size as n for the factorial. s->r is
|
|
just a user-supplied parameter. speed_mpn_lshift() uses it as a shift,
|
|
speed_mpn_mul_1() uses it as a multiplier. */
|
|
|
|
|
|
/* MPN_COPY etc can be macros, so the _CALL forms are necessary */
|
|
double
|
|
speed_MPN_COPY (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_COPY_CALL (MPN_COPY (wp, s->xp, s->size));
|
|
}
|
|
double
|
|
speed_MPN_COPY_INCR (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_COPY_CALL (MPN_COPY_INCR (wp, s->xp, s->size));
|
|
}
|
|
double
|
|
speed_MPN_COPY_DECR (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_COPY_CALL (MPN_COPY_DECR (wp, s->xp, s->size));
|
|
}
|
|
double
|
|
speed_memcpy (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_COPY_CALL
|
|
(memcpy (wp, s->xp, s->size * BYTES_PER_MP_LIMB));
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_addmul_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_UNARY_1 (mpn_addmul_1);
|
|
}
|
|
double
|
|
speed_mpn_submul_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_UNARY_1 (mpn_submul_1);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_mul_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_UNARY_1 (mpn_mul_1);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_lshift (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_UNARY_1 (mpn_lshift);
|
|
}
|
|
double
|
|
speed_mpn_rshift (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_UNARY_1 (mpn_rshift);
|
|
}
|
|
|
|
|
|
/* The carry-in variants (if available) are good for measuring because they
|
|
won't skip a division if high<divisor. Alternately, use -1 as a divisor
|
|
with the plain _1 forms. */
|
|
double
|
|
speed_mpn_divrem_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1);
|
|
}
|
|
double
|
|
speed_mpn_divrem_1f (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1);
|
|
}
|
|
#if HAVE_NATIVE_mpn_divrem_1c
|
|
double
|
|
speed_mpn_divrem_1c (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_DIVREM_1C (mpn_divrem_1c);
|
|
}
|
|
double
|
|
speed_mpn_divrem_1cf (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_DIVREM_1CF (mpn_divrem_1c);
|
|
}
|
|
#endif
|
|
|
|
double
|
|
speed_mpn_divrem_2 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2);
|
|
}
|
|
|
|
double
|
|
speed_mpn_mod_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1);
|
|
}
|
|
#if HAVE_NATIVE_mpn_mod_1c
|
|
double
|
|
speed_mpn_mod_1c (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MOD_1C (mpn_mod_1c);
|
|
}
|
|
#endif
|
|
|
|
double
|
|
speed_mpn_divexact_by3 (struct speed_params *s)
|
|
{
|
|
/* mpn_divexact_by3 is a macro, so the _CALL form is necessary */
|
|
SPEED_ROUTINE_MPN_COPY_CALL(mpn_divexact_by3 (wp, s->xp, s->size));
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_bz_divrem_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BZ_DIVREM_N (mpn_bz_divrem_n);
|
|
}
|
|
double
|
|
speed_mpn_bz_divrem_sb (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BZ_DIVREM_SB (mpn_sb_divrem_mn);
|
|
}
|
|
double
|
|
speed_mpn_bz_tdiv_qr (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BZ_TDIV_QR (mpn_tdiv_qr);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_popcount (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_POPCOUNT (mpn_popcount);
|
|
}
|
|
double
|
|
speed_mpn_hamdist (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_HAMDIST (mpn_hamdist);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_add_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N (mpn_add_n);
|
|
}
|
|
double
|
|
speed_mpn_sub_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N (mpn_sub_n);
|
|
}
|
|
double
|
|
speed_mpn_add_n_self (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_SELF (mpn_add_n);
|
|
}
|
|
double
|
|
speed_mpn_add_n_inplace (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_INPLACE (mpn_add_n);
|
|
}
|
|
|
|
|
|
/* mpn_and_n etc can be macros and so have to be handled with
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL forms */
|
|
double
|
|
speed_mpn_and_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_and_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_andn_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_andn_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_nand_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nand_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_ior_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_ior_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_iorn_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_iorn_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_nior_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nior_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_xor_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xor_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_xnor_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xnor_n (wp, s->xp, s->yp, s->size));
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_mul_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MUL_N (mpn_mul_n);
|
|
}
|
|
double
|
|
speed_mpn_sqr_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_SQR (mpn_sqr_n);
|
|
}
|
|
double
|
|
speed_mpn_mul_n_sqr (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_SQR_CALL (mpn_mul_n (wp, s->xp, s->xp, s->size));
|
|
}
|
|
|
|
double
|
|
speed_mpn_mul_basecase (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MUL_BASECASE(mpn_mul_basecase);
|
|
}
|
|
double
|
|
speed_mpn_sqr_basecase (struct speed_params *s)
|
|
{
|
|
/* FIXME: size restrictions on some versions of sqr_basecase */
|
|
SPEED_ROUTINE_MPN_SQR (mpn_sqr_basecase);
|
|
}
|
|
|
|
double
|
|
speed_mpn_kara_mul_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_KARA_MUL_N (mpn_kara_mul_n);
|
|
}
|
|
double
|
|
speed_mpn_kara_sqr_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_KARA_SQR_N (mpn_kara_sqr_n);
|
|
}
|
|
|
|
double
|
|
speed_mpn_toom3_mul_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_TOOM3_MUL_N (mpn_toom3_mul_n);
|
|
}
|
|
double
|
|
speed_mpn_toom3_sqr_n (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_TOOM3_SQR_N (mpn_toom3_sqr_n);
|
|
}
|
|
|
|
double
|
|
speed_mpn_mul_fft_full (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MUL_N_CALL
|
|
(mpn_mul_fft_full (wp, s->xp, s->size, s->yp, s->size));
|
|
}
|
|
double
|
|
speed_mpn_mul_fft_full_sqr (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_SQR_CALL
|
|
(mpn_mul_fft_full (wp, s->xp, s->size, s->xp, s->size));
|
|
}
|
|
|
|
|
|
/* These are mod 2^N+1 multiplies and squares. If s->r is supplied it's
|
|
used as k, otherwise the best k for the size is used. If s->size isn't a
|
|
multiple of 2^k it's rounded up to make the effective operation size. */
|
|
|
|
#define SPEED_ROUTINE_MPN_MUL_FFT_CALL(call, sqr) \
|
|
{ \
|
|
mp_ptr wp; \
|
|
mp_size_t pl; \
|
|
int k; \
|
|
unsigned i; \
|
|
double t; \
|
|
TMP_DECL (marker); \
|
|
\
|
|
SPEED_RESTRICT_COND (s->size >= 1); \
|
|
\
|
|
if (s->r != 0) \
|
|
k = s->r; \
|
|
else \
|
|
k = mpn_fft_best_k (s->size, sqr); \
|
|
\
|
|
TMP_MARK (marker); \
|
|
pl = mpn_fft_next_size (s->size, k); \
|
|
wp = SPEED_TMP_ALLOC_LIMBS (pl+1, s->align_wp); \
|
|
\
|
|
speed_operand_src (s, s->xp, s->size); \
|
|
if (!sqr) \
|
|
speed_operand_src (s, s->yp, s->size); \
|
|
speed_operand_dst (s, wp, pl+1); \
|
|
speed_cache_fill (s); \
|
|
\
|
|
speed_starttime (); \
|
|
i = s->reps; \
|
|
do \
|
|
call; \
|
|
while (--i != 0); \
|
|
t = speed_endtime (); \
|
|
\
|
|
TMP_FREE (marker); \
|
|
return t; \
|
|
}
|
|
|
|
double
|
|
speed_mpn_mul_fft (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MUL_FFT_CALL
|
|
(mpn_mul_fft (wp, pl, s->xp, s->size, s->yp, s->size, k), 0);
|
|
}
|
|
|
|
double
|
|
speed_mpn_mul_fft_sqr (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_MUL_FFT_CALL
|
|
(mpn_mul_fft (wp, pl, s->xp, s->size, s->xp, s->size, k), 1);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_gcd (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_GCD (mpn_gcd);
|
|
}
|
|
double
|
|
speed_mpn_gcdext (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext);
|
|
}
|
|
double
|
|
speed_mpn_gcd_1 (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_GCD_1 (mpn_gcd_1);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpn_jacobi_base (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpz_fac_ui (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPZ_UI (mpz_fac_ui);
|
|
}
|
|
double
|
|
speed_mpz_fib_ui (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPZ_UI (mpz_fib_ui);
|
|
}
|
|
|
|
|
|
double
|
|
speed_mpz_powm (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MPZ_POWM (mpz_powm);
|
|
}
|
|
|
|
|
|
double
|
|
speed_modlimb_invert (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_MODLIMB_INVERT (modlimb_invert);
|
|
}
|
|
|
|
|
|
double
|
|
speed_noop (struct speed_params *s)
|
|
{
|
|
unsigned i;
|
|
|
|
speed_starttime ();
|
|
i = s->reps;
|
|
do
|
|
noop ();
|
|
while (--i != 0);
|
|
return speed_endtime ();
|
|
}
|
|
|
|
double
|
|
speed_noop_wxs (struct speed_params *s)
|
|
{
|
|
mp_ptr wp;
|
|
unsigned i;
|
|
double t;
|
|
TMP_DECL (marker);
|
|
|
|
TMP_MARK (marker);
|
|
wp = TMP_ALLOC_LIMBS (1);
|
|
|
|
speed_starttime ();
|
|
i = s->reps;
|
|
do
|
|
noop_wxs (wp, s->xp, s->size);
|
|
while (--i != 0);
|
|
t = speed_endtime ();
|
|
|
|
TMP_FREE (marker);
|
|
return t;
|
|
}
|
|
|
|
double
|
|
speed_noop_wxys (struct speed_params *s)
|
|
{
|
|
mp_ptr wp;
|
|
unsigned i;
|
|
double t;
|
|
TMP_DECL (marker);
|
|
|
|
TMP_MARK (marker);
|
|
wp = TMP_ALLOC_LIMBS (1);
|
|
|
|
speed_starttime ();
|
|
i = s->reps;
|
|
do
|
|
noop_wxys (wp, s->xp, s->yp, s->size);
|
|
while (--i != 0);
|
|
t = speed_endtime ();
|
|
|
|
TMP_FREE (marker);
|
|
return t;
|
|
}
|
|
|
|
|
|
#define SPEED_ROUTINE_ALLOC_FREE(variables, calls) \
|
|
{ \
|
|
unsigned i; \
|
|
variables; \
|
|
\
|
|
speed_starttime (); \
|
|
i = s->reps; \
|
|
do \
|
|
{ \
|
|
calls; \
|
|
} \
|
|
while (--i != 0); \
|
|
return speed_endtime (); \
|
|
}
|
|
|
|
|
|
/* Compare these to see how much malloc/free costs and then how much
|
|
_mp_default_allocate/free and mpz_init/clear add. mpz_init/clear or
|
|
mpq_init/clear will be doing a 1 limb allocate, so use that as the size
|
|
when including them in comparisons. */
|
|
|
|
double
|
|
speed_malloc_free (struct speed_params *s)
|
|
{
|
|
size_t bytes = s->size * BYTES_PER_MP_LIMB;
|
|
SPEED_ROUTINE_ALLOC_FREE (void *p,
|
|
p = malloc (bytes);
|
|
free (p));
|
|
}
|
|
|
|
double
|
|
speed_malloc_realloc_free (struct speed_params *s)
|
|
{
|
|
size_t bytes = s->size * BYTES_PER_MP_LIMB;
|
|
SPEED_ROUTINE_ALLOC_FREE (void *p,
|
|
p = malloc (BYTES_PER_MP_LIMB);
|
|
p = realloc (p, bytes);
|
|
free (p));
|
|
}
|
|
|
|
double
|
|
speed_mp_allocate_free (struct speed_params *s)
|
|
{
|
|
size_t bytes = s->size * BYTES_PER_MP_LIMB;
|
|
SPEED_ROUTINE_ALLOC_FREE (void *p,
|
|
p = (*_mp_allocate_func) (bytes);
|
|
(*_mp_free_func) (p, bytes));
|
|
}
|
|
|
|
double
|
|
speed_mp_allocate_reallocate_free (struct speed_params *s)
|
|
{
|
|
size_t bytes = s->size * BYTES_PER_MP_LIMB;
|
|
SPEED_ROUTINE_ALLOC_FREE
|
|
(void *p,
|
|
p = (*_mp_allocate_func) (BYTES_PER_MP_LIMB);
|
|
p = (*_mp_reallocate_func) (p, bytes, BYTES_PER_MP_LIMB);
|
|
(*_mp_free_func) (p, bytes));
|
|
}
|
|
|
|
double
|
|
speed_mpz_init_clear (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
|
|
mpz_init (z);
|
|
mpz_clear (z));
|
|
}
|
|
|
|
double
|
|
speed_mpz_init_realloc_clear (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
|
|
mpz_init (z);
|
|
_mpz_realloc (z, s->size);
|
|
mpz_clear (z));
|
|
}
|
|
|
|
double
|
|
speed_mpq_init_clear (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_ALLOC_FREE (mpq_t q,
|
|
mpq_init (q);
|
|
mpq_clear (q));
|
|
}
|
|
|
|
double
|
|
speed_mpf_init_clear (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_ALLOC_FREE (mpf_t f,
|
|
mpf_init (f);
|
|
mpf_clear (f));
|
|
}
|
|
|
|
|
|
/* Compare this to mpn_add_n to see how much overhead mpz_add adds. Note
|
|
that repeatedly calling mpz_add with the same data gives branch predition
|
|
in it an advantage. */
|
|
|
|
double
|
|
speed_mpz_add (struct speed_params *s)
|
|
{
|
|
mpz_t w, x, y;
|
|
unsigned i;
|
|
double t;
|
|
|
|
mpz_init (w);
|
|
mpz_init (x);
|
|
mpz_init (y);
|
|
|
|
mpz_set_n (x, s->xp, s->size);
|
|
mpz_set_n (y, s->yp, s->size);
|
|
mpz_add (w, x, y);
|
|
|
|
speed_starttime ();
|
|
i = s->reps;
|
|
do
|
|
{
|
|
mpz_add (w, x, y);
|
|
}
|
|
while (--i != 0);
|
|
t = speed_endtime ();
|
|
|
|
mpz_clear (w);
|
|
mpz_clear (x);
|
|
mpz_clear (y);
|
|
return t;
|
|
}
|
|
|
|
|
|
/* If r==0, calculate (size,size/2),
|
|
otherwise calculate (size,r). */
|
|
|
|
double
|
|
speed_mpz_bin_uiui (struct speed_params *s)
|
|
{
|
|
mpz_t w;
|
|
unsigned long k;
|
|
unsigned i;
|
|
double t;
|
|
|
|
mpz_init (w);
|
|
if (s->r != 0)
|
|
k = s->r;
|
|
else
|
|
k = s->size/2;
|
|
|
|
speed_starttime ();
|
|
i = s->reps;
|
|
do
|
|
{
|
|
mpz_bin_uiui (w, s->size, k);
|
|
}
|
|
while (--i != 0);
|
|
t = speed_endtime ();
|
|
|
|
mpz_clear (w);
|
|
return t;
|
|
}
|
|
|
|
|
|
/* The multiplies are successively dependent so the latency is measured, not
|
|
the issue rate. There's only 10 per loop so the code doesn't get too big
|
|
since umul_ppmm is several instructions on some cpus.
|
|
|
|
Putting the arguments as "h,l,l,h" gets slightly better code from gcc
|
|
2.95.2 on x86, it puts only one mov between each mul, not two. That mov
|
|
though will probably show up as a bogus extra cycle though.
|
|
|
|
The measuring function macros are into three parts to avoid overflowing
|
|
preprocessor expansion space if umul_ppmm is big.
|
|
|
|
Limitations:
|
|
|
|
Don't blindly use this to set UMUL_TIME in gmp-mparam.h, check the code
|
|
generated first, especially on CPUs with low latency multipliers.
|
|
|
|
The default umul_ppmm doing h*l will be getting increasing numbers of
|
|
high zero bits in the calculation. CPUs with data-dependent multipliers
|
|
will want to use umul_ppmm.1 to get some randomization into the
|
|
calculation. The extra xors and fetches will be a slowdown of course. */
|
|
|
|
#define SPEED_MACRO_UMUL_PPMM_A \
|
|
{ \
|
|
mp_limb_t h, l; \
|
|
unsigned i; \
|
|
double t; \
|
|
\
|
|
s->time_divisor = 10; \
|
|
\
|
|
h = s->xp[0]; \
|
|
l = s->yp[0]; \
|
|
\
|
|
switch (s->r) { \
|
|
case 1: \
|
|
speed_starttime (); \
|
|
i = s->reps; \
|
|
do \
|
|
{
|
|
|
|
#define SPEED_MACRO_UMUL_PPMM_B \
|
|
} \
|
|
while (--i != 0); \
|
|
t = speed_endtime (); \
|
|
break; \
|
|
\
|
|
default: \
|
|
speed_starttime (); \
|
|
i = s->reps; \
|
|
do \
|
|
{
|
|
|
|
#define SPEED_MACRO_UMUL_PPMM_C \
|
|
} \
|
|
while (--i != 0); \
|
|
t = speed_endtime (); \
|
|
break; \
|
|
} \
|
|
\
|
|
/* stop the compiler optimizing away the whole calculation! */ \
|
|
noop_1 (h); \
|
|
noop_1 (l); \
|
|
\
|
|
return t; \
|
|
}
|
|
|
|
|
|
double
|
|
speed_umul_ppmm (struct speed_params *s)
|
|
{
|
|
SPEED_MACRO_UMUL_PPMM_A;
|
|
{
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[0]; l ^= s->yp_block[0];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[1]; l ^= s->yp_block[1];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[2]; l ^= s->yp_block[2];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[3]; l ^= s->yp_block[3];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[4]; l ^= s->yp_block[4];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[5]; l ^= s->yp_block[5];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[6]; l ^= s->yp_block[6];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[7]; l ^= s->yp_block[7];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[8]; l ^= s->yp_block[8];
|
|
umul_ppmm (h, l, l, h); h ^= s->xp_block[9]; l ^= s->yp_block[9];
|
|
}
|
|
SPEED_MACRO_UMUL_PPMM_B;
|
|
{
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
umul_ppmm (h, l, l, h);
|
|
}
|
|
SPEED_MACRO_UMUL_PPMM_C;
|
|
}
|
|
|
|
|
|
#if HAVE_NATIVE_mpn_umul_ppmm
|
|
|
|
#if defined (__hppa) && W_TYPE_SIZE == 64
|
|
#define CALL_MPN_UMUL_PPMM (h = __MPN (umul_ppmm) (h, l, &l))
|
|
#else
|
|
#define CALL_MPN_UMUL_PPMM (h = __MPN (umul_ppmm) (&l, h, l))
|
|
#endif
|
|
|
|
double
|
|
speed_mpn_umul_ppmm (struct speed_params *s)
|
|
{
|
|
SPEED_MACRO_UMUL_PPMM_A;
|
|
{
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[0]; l ^= s->yp_block[0];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[1]; l ^= s->yp_block[1];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[2]; l ^= s->yp_block[2];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[3]; l ^= s->yp_block[3];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[4]; l ^= s->yp_block[4];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[5]; l ^= s->yp_block[5];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[6]; l ^= s->yp_block[6];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[7]; l ^= s->yp_block[7];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[8]; l ^= s->yp_block[8];
|
|
CALL_MPN_UMUL_PPMM; h ^= s->xp_block[9]; l ^= s->yp_block[9];
|
|
}
|
|
SPEED_MACRO_UMUL_PPMM_B;
|
|
{
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
CALL_MPN_UMUL_PPMM;
|
|
}
|
|
SPEED_MACRO_UMUL_PPMM_C;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* The divisions are successively dependent so latency is measured, not
|
|
issue rate. There's only 10 per loop so the code doesn't get too big,
|
|
especially for udiv_qrnnd_preinv and preinv2norm, which are several
|
|
instructions each.
|
|
|
|
Note that it's only the division which is measured here, there's no data
|
|
fetching and no shifting if the divisor gets normalized.
|
|
|
|
In speed_udiv_qrnnd with gcc 2.95.2 on x86 the parameters "q,r,r,q,d"
|
|
generate x86 div instructions with nothing in between.
|
|
|
|
The measuring function macros are in two parts to avoid overflowing
|
|
preprocessor expansion space if udiv_qrnnd etc are big.
|
|
|
|
Limitations:
|
|
|
|
Don't blindly use this to set UDIV_TIME in gmp-mparam.h, check the code
|
|
generated first.
|
|
|
|
CPUs with data-dependent divisions may want more attention paid to the
|
|
randomness of the data used. Probably the measurement wanted is over
|
|
uniformly distributed numbers, but what's here might not be giving that. */
|
|
|
|
#define SPEED_ROUTINE_UDIV_QRNND_A(normalize) \
|
|
{ \
|
|
double t; \
|
|
unsigned i; \
|
|
mp_limb_t q, r, d; \
|
|
mp_limb_t dinv; \
|
|
\
|
|
s->time_divisor = 10; \
|
|
\
|
|
/* divisor from "r" parameter, or a default */ \
|
|
d = s->r; \
|
|
if (d == 0) \
|
|
d = 0x12345678; \
|
|
\
|
|
if (normalize) \
|
|
{ \
|
|
unsigned norm; \
|
|
count_leading_zeros (norm, d); \
|
|
d <<= norm; \
|
|
invert_limb (dinv, d); \
|
|
} \
|
|
\
|
|
q = s->xp[0]; \
|
|
r = s->yp[0] % d; \
|
|
\
|
|
speed_starttime (); \
|
|
i = s->reps; \
|
|
do \
|
|
{
|
|
|
|
#define SPEED_ROUTINE_UDIV_QRNND_B \
|
|
} \
|
|
while (--i != 0); \
|
|
t = speed_endtime (); \
|
|
\
|
|
/* stop the compiler optimizing away the whole calculation! */ \
|
|
noop_1 (q); \
|
|
noop_1 (r); \
|
|
\
|
|
return t; \
|
|
}
|
|
|
|
double
|
|
speed_udiv_qrnnd (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_UDIV_QRNND_A (UDIV_NEEDS_NORMALIZATION);
|
|
{
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
udiv_qrnnd (q, r, r, q, d);
|
|
}
|
|
SPEED_ROUTINE_UDIV_QRNND_B;
|
|
}
|
|
|
|
double
|
|
speed_udiv_qrnnd_preinv (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_UDIV_QRNND_A (1);
|
|
{
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv (q, r, r, q, d, dinv);
|
|
}
|
|
SPEED_ROUTINE_UDIV_QRNND_B;
|
|
}
|
|
|
|
double
|
|
speed_udiv_qrnnd_preinv2norm (struct speed_params *s)
|
|
{
|
|
SPEED_ROUTINE_UDIV_QRNND_A (1);
|
|
{
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
|
|
}
|
|
SPEED_ROUTINE_UDIV_QRNND_B;
|
|
}
|
|
|
|
#if HAVE_NATIVE_mpn_udiv_qrnnd
|
|
|
|
#if defined (__hppa) && W_TYPE_SIZE == 64
|
|
#define CALL_MPN_UDIV_QRNND (q = __MPN (udiv_qrnnd) (r, q, d, &r))
|
|
#else
|
|
#define CALL_MPN_UDIV_QRNND (q = __MPN (udiv_qrnnd) (&r, r, q, d))
|
|
#endif
|
|
|
|
double
|
|
speed_mpn_udiv_qrnnd (struct speed_params *s)
|
|
{
|
|
|
|
SPEED_ROUTINE_UDIV_QRNND_A (1);
|
|
{
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
CALL_MPN_UDIV_QRNND;
|
|
}
|
|
SPEED_ROUTINE_UDIV_QRNND_B;
|
|
}
|
|
#endif
|