macssh/gmp/mpfr/log2.c

103 lines
2.8 KiB
C
Executable File

/* mpfr_log2 -- compute natural logarithm of 2
Copyright (C) 1999 PolKA project, Inria Lorraine and Loria
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
License for more details.
You should have received a copy of the GNU Library General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include <math.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "mpfr.h"
mpfr_t __mpfr_log2; /* stored value of log(2) with rnd_mode=GMP_RNDZ */
int __mpfr_log2_prec=0; /* precision of stored value */
/* set x to log(2) rounded to precision PREC(x) with direction rnd_mode
use formula log(2) = sum(1/k/2^k, k=1..infinity)
whence 2^N*log(2) = S(N) + R(N)
where S(N) = sum(2^(N-k)/k, k=1..N-1)
and R(N) = sum(1/k/2^(k-N), k=N..infinity) < 2/N
Let S'(N) = sum(floor(2^(N-k)/k), k=1..N-1)
Then 2^N*log(2)-S'(N) <= N-1+2/N <= N for N>=2.
*/
void
#if __STDC__
mpfr_log2(mpfr_ptr x, unsigned char rnd_mode)
#else
mpfr_log2(x, rnd_mode) mpfr_ptr x; unsigned char rnd_mode;
#endif
{
int N, oldN, k, precx; mpz_t s, t, u;
precx = PREC(x);
/* has stored value enough precision ? */
if (precx <= __mpfr_log2_prec) {
if (rnd_mode==GMP_RNDZ || rnd_mode==GMP_RNDD ||
mpfr_can_round(__mpfr_log2, __mpfr_log2_prec, GMP_RNDZ, rnd_mode, precx))
{
mpfr_set(x, __mpfr_log2, rnd_mode); return;
}
}
/* need to recompute */
N=2;
do {
oldN = N;
N = precx + (int)ceil(log((double)N)/log(2.0));
} while (N != oldN);
mpz_init_set_ui(s,0);
mpz_init(u);
mpz_init_set_ui(t,1);
#if 0
/* use log(2) = sum(1/k/2^k, k=1..infinity) */
mpz_mul_2exp(t, t, N);
for (k=1;k<N;k++) {
mpz_div_2exp(t, t, 1);
mpz_fdiv_q_ui(u, t, k);
mpz_add(s, s, u);
}
#else
/* use log(2) = sum((6*k-1)/(2*k^2-k)/2^(2*k+1), k=1..infinity) */
mpz_mul_2exp(t, t, N-1);
for (k=1;k<N/2;k++) {
mpz_div_2exp(t, t, 2);
mpz_mul_ui(u, t, 6*k-1);
mpz_fdiv_q_ui(u, u, k*(2*k-1));
mpz_add(s, s, u);
}
#endif
mpfr_set_z(x, s, rnd_mode);
EXP(x) -= N;
/* stored computed value */
if (__mpfr_log2_prec==0) mpfr_init2(__mpfr_log2, precx);
else mpfr_set_prec(__mpfr_log2, precx);
mpfr_set(__mpfr_log2, x, GMP_RNDZ);
__mpfr_log2_prec=precx;
mpz_clear(s); mpz_clear(t); mpz_clear(u);
}