micropython/ports/rp2/mphalport.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

294 lines
9.4 KiB
C
Raw Permalink Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/misc.h"
#include "shared/runtime/interrupt_char.h"
#include "shared/runtime/softtimer.h"
#include "shared/timeutils/timeutils.h"
#include "shared/tinyusb/mp_usbd.h"
#include "pendsv.h"
#include "tusb.h"
#include "uart.h"
#include "hardware/rtc.h"
#include "pico/unique_id.h"
#if MICROPY_PY_NETWORK_CYW43
#include "lib/cyw43-driver/src/cyw43.h"
#endif
// This needs to be added to the result of time_us_64() to get the number of
// microseconds since the Epoch.
STATIC uint64_t time_us_64_offset_from_epoch;
static alarm_id_t soft_timer_alarm_id = 0;
#if MICROPY_HW_ENABLE_UART_REPL || MICROPY_HW_USB_CDC
#ifndef MICROPY_HW_STDIN_BUFFER_LEN
#define MICROPY_HW_STDIN_BUFFER_LEN 512
#endif
STATIC uint8_t stdin_ringbuf_array[MICROPY_HW_STDIN_BUFFER_LEN];
ringbuf_t stdin_ringbuf = { stdin_ringbuf_array, sizeof(stdin_ringbuf_array) };
#endif
#if MICROPY_HW_USB_CDC
uint8_t cdc_itf_pending; // keep track of cdc interfaces which need attention to poll
void poll_cdc_interfaces(void) {
if (!cdc_itf_pending) {
// Explicitly run the USB stack as the scheduler may be locked (eg we are in
// an interrupt handler) while there is data pending.
mp_usbd_task();
}
// any CDC interfaces left to poll?
if (cdc_itf_pending && ringbuf_free(&stdin_ringbuf)) {
for (uint8_t itf = 0; itf < 8; ++itf) {
if (cdc_itf_pending & (1 << itf)) {
tud_cdc_rx_cb(itf);
if (!cdc_itf_pending) {
break;
}
}
}
}
}
void tud_cdc_rx_cb(uint8_t itf) {
// consume pending USB data immediately to free usb buffer and keep the endpoint from stalling.
// in case the ringbuffer is full, mark the CDC interface that need attention later on for polling
cdc_itf_pending &= ~(1 << itf);
for (uint32_t bytes_avail = tud_cdc_n_available(itf); bytes_avail > 0; --bytes_avail) {
if (ringbuf_free(&stdin_ringbuf)) {
int data_char = tud_cdc_read_char();
if (data_char == mp_interrupt_char) {
mp_sched_keyboard_interrupt();
} else {
ringbuf_put(&stdin_ringbuf, data_char);
}
} else {
cdc_itf_pending |= (1 << itf);
return;
}
}
}
#endif
uintptr_t mp_hal_stdio_poll(uintptr_t poll_flags) {
uintptr_t ret = 0;
#if MICROPY_HW_USB_CDC
poll_cdc_interfaces();
#endif
#if MICROPY_HW_ENABLE_UART_REPL || MICROPY_HW_USB_CDC
if ((poll_flags & MP_STREAM_POLL_RD) && ringbuf_peek(&stdin_ringbuf) != -1) {
ret |= MP_STREAM_POLL_RD;
}
if (poll_flags & MP_STREAM_POLL_WR) {
#if MICROPY_HW_ENABLE_UART_REPL
ret |= MP_STREAM_POLL_WR;
#else
if (tud_cdc_connected() && tud_cdc_write_available() > 0) {
ret |= MP_STREAM_POLL_WR;
}
#endif
}
#endif
#if MICROPY_PY_OS_DUPTERM
ret |= mp_os_dupterm_poll(poll_flags);
#endif
return ret;
}
// Receive single character
int mp_hal_stdin_rx_chr(void) {
for (;;) {
#if MICROPY_HW_USB_CDC
poll_cdc_interfaces();
#endif
int c = ringbuf_get(&stdin_ringbuf);
if (c != -1) {
return c;
}
#if MICROPY_PY_OS_DUPTERM
int dupterm_c = mp_os_dupterm_rx_chr();
if (dupterm_c >= 0) {
return dupterm_c;
}
#endif
mp_event_wait_indefinite();
}
}
// Send string of given length
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
mp_uint_t mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) {
mp_uint_t ret = len;
bool did_write = false;
#if MICROPY_HW_ENABLE_UART_REPL
mp_uart_write_strn(str, len);
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
did_write = true;
#endif
#if MICROPY_HW_USB_CDC
if (tud_cdc_connected()) {
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
size_t i = 0;
while (i < len) {
uint32_t n = len - i;
if (n > CFG_TUD_CDC_EP_BUFSIZE) {
n = CFG_TUD_CDC_EP_BUFSIZE;
}
int timeout = 0;
// Wait with a max of USC_CDC_TIMEOUT ms
while (n > tud_cdc_write_available() && timeout++ < MICROPY_HW_USB_CDC_TX_TIMEOUT) {
mp_event_wait_ms(1);
// Explicitly run the USB stack as the scheduler may be locked (eg we
// are in an interrupt handler), while there is data pending.
mp_usbd_task();
}
if (timeout >= MICROPY_HW_USB_CDC_TX_TIMEOUT) {
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
ret = i;
break;
}
uint32_t n2 = tud_cdc_write(str + i, n);
tud_cdc_write_flush();
i += n2;
}
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
ret = MIN(i, ret);
did_write = true;
}
#endif
#if MICROPY_PY_OS_DUPTERM
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
int dupterm_res = mp_os_dupterm_tx_strn(str, len);
if (dupterm_res >= 0) {
did_write = true;
ret = MIN((mp_uint_t)dupterm_res, ret);
}
#endif
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
return did_write ? ret : 0;
}
void mp_hal_delay_ms(mp_uint_t ms) {
absolute_time_t t = make_timeout_time_ms(ms);
do {
mp_event_handle_nowait();
} while (!best_effort_wfe_or_timeout(t));
}
void mp_hal_time_ns_set_from_rtc(void) {
// Delay at least one RTC clock cycle so it's registers have updated with the most
// recent time settings.
sleep_us(23);
// Sample RTC and time_us_64() as close together as possible, so the offset
// calculated for the latter can be as accurate as possible.
datetime_t t;
rtc_get_datetime(&t);
uint64_t us = time_us_64();
// Calculate the difference between the RTC Epoch seconds and time_us_64().
uint64_t s = timeutils_seconds_since_epoch(t.year, t.month, t.day, t.hour, t.min, t.sec);
time_us_64_offset_from_epoch = (uint64_t)s * 1000000ULL - us;
}
uint64_t mp_hal_time_ns(void) {
// The RTC only has seconds resolution, so instead use time_us_64() to get a more
// precise measure of Epoch time. Both these "clocks" are clocked from the same
// source so they remain synchronised, and only differ by a fixed offset (calculated
// in mp_hal_time_ns_set_from_rtc).
return (time_us_64_offset_from_epoch + time_us_64()) * 1000ULL;
}
// Generate a random locally administered MAC address (LAA)
void mp_hal_generate_laa_mac(int idx, uint8_t buf[6]) {
#ifndef NDEBUG
printf("Warning: No MAC in OTP, generating MAC from board id\n");
#endif
pico_unique_board_id_t pid;
pico_get_unique_board_id(&pid);
buf[0] = 0x02; // LAA range
buf[1] = (pid.id[7] << 4) | (pid.id[6] & 0xf);
buf[2] = (pid.id[5] << 4) | (pid.id[4] & 0xf);
buf[3] = (pid.id[3] << 4) | (pid.id[2] & 0xf);
buf[4] = pid.id[1];
buf[5] = (pid.id[0] << 2) | idx;
}
// A board can override this if needed
MP_WEAK void mp_hal_get_mac(int idx, uint8_t buf[6]) {
#if MICROPY_PY_NETWORK_CYW43
// The mac should come from cyw43 otp when CYW43_USE_OTP_MAC is defined
// This is loaded into the state after the driver is initialised
// cyw43_hal_generate_laa_mac is only called by the driver to generate a mac if otp is not set
if (idx == MP_HAL_MAC_WLAN0) {
memcpy(buf, cyw43_state.mac, 6);
return;
}
#endif
mp_hal_generate_laa_mac(idx, buf);
}
void mp_hal_get_mac_ascii(int idx, size_t chr_off, size_t chr_len, char *dest) {
static const char hexchr[16] = "0123456789ABCDEF";
uint8_t mac[6];
mp_hal_get_mac(idx, mac);
for (; chr_len; ++chr_off, --chr_len) {
*dest++ = hexchr[mac[chr_off >> 1] >> (4 * (1 - (chr_off & 1))) & 0xf];
}
}
// Shouldn't be used, needed by cyw43-driver in debug build.
uint32_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
panic_unsupported();
}
static int64_t soft_timer_callback(alarm_id_t id, void *user_data) {
soft_timer_alarm_id = 0;
pendsv_schedule_dispatch(PENDSV_DISPATCH_SOFT_TIMER, soft_timer_handler);
return 0; // don't reschedule this alarm
}
uint32_t soft_timer_get_ms(void) {
return mp_hal_ticks_ms();
}
void soft_timer_schedule_at_ms(uint32_t ticks_ms) {
if (soft_timer_alarm_id != 0) {
cancel_alarm(soft_timer_alarm_id);
}
int32_t ms = soft_timer_ticks_diff(ticks_ms, mp_hal_ticks_ms());
ms = MAX(0, ms);
soft_timer_alarm_id = add_alarm_in_ms(ms, soft_timer_callback, NULL, true);
}