2017-11-27 01:51:52 +00:00
|
|
|
# test parsing of floats
|
|
|
|
|
|
|
|
inf = float('inf')
|
|
|
|
|
|
|
|
# it shouldn't matter where the decimal point is if the exponent balances the value
|
|
|
|
print(float('1234') - float('0.1234e4'))
|
|
|
|
print(float('1.015625') - float('1015625e-6'))
|
|
|
|
|
|
|
|
# very large integer part with a very negative exponent should cancel out
|
2018-02-26 04:54:03 +00:00
|
|
|
print('%.4e' % float('9' * 60 + 'e-60'))
|
|
|
|
print('%.4e' % float('9' * 60 + 'e-40'))
|
2017-11-27 01:51:52 +00:00
|
|
|
|
|
|
|
# many fractional digits
|
|
|
|
print(float('.' + '9' * 70))
|
|
|
|
print(float('.' + '9' * 70 + 'e20'))
|
|
|
|
print(float('.' + '9' * 70 + 'e-50') == float('1e-50'))
|
|
|
|
|
|
|
|
# tiny fraction with large exponent
|
|
|
|
print(float('.' + '0' * 60 + '1e10') == float('1e-51'))
|
2018-05-11 04:51:18 +01:00
|
|
|
print(float('.' + '0' * 60 + '9e25') == float('9e-36'))
|
|
|
|
print(float('.' + '0' * 60 + '9e40') == float('9e-21'))
|
2018-02-08 03:02:50 +00:00
|
|
|
|
|
|
|
# ensure that accuracy is retained when value is close to a subnormal
|
|
|
|
print(float('1.00000000000000000000e-37'))
|
|
|
|
print(float('10.0000000000000000000e-38'))
|
|
|
|
print(float('100.000000000000000000e-39'))
|
2018-05-21 04:05:40 +01:00
|
|
|
|
|
|
|
# very large exponent literal
|
|
|
|
print(float('1e4294967301'))
|
|
|
|
print(float('1e-4294967301'))
|
|
|
|
print(float('1e18446744073709551621'))
|
|
|
|
print(float('1e-18446744073709551621'))
|
2018-09-20 13:26:53 +01:00
|
|
|
|
|
|
|
# check small decimals are as close to their true value as possible
|
|
|
|
for n in range(1, 10):
|
|
|
|
print(float('0.%u' % n) == n / 10)
|