2021-05-23 08:20:43 +01:00
|
|
|
.. _rp2_quickref:
|
|
|
|
|
|
|
|
Quick reference for the RP2
|
|
|
|
===========================
|
|
|
|
|
|
|
|
.. image:: img/rpipico.jpg
|
|
|
|
:alt: Raspberry Pi Pico
|
|
|
|
:width: 640px
|
|
|
|
|
|
|
|
The Raspberry Pi Pico Development Board (image attribution: Raspberry Pi Foundation).
|
|
|
|
|
|
|
|
Below is a quick reference for Raspberry Pi RP2xxx boards. If it is your first time
|
|
|
|
working with this board it may be useful to get an overview of the microcontroller:
|
|
|
|
|
|
|
|
.. toctree::
|
|
|
|
:maxdepth: 1
|
|
|
|
|
|
|
|
general.rst
|
|
|
|
tutorial/intro.rst
|
|
|
|
|
|
|
|
Installing MicroPython
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
See the corresponding section of tutorial: :ref:`rp2_intro`. It also includes
|
|
|
|
a troubleshooting subsection.
|
|
|
|
|
|
|
|
General board control
|
|
|
|
---------------------
|
|
|
|
|
|
|
|
The MicroPython REPL is on the USB serial port.
|
|
|
|
Tab-completion is useful to find out what methods an object has.
|
|
|
|
Paste mode (ctrl-E) is useful to paste a large slab of Python code into
|
|
|
|
the REPL.
|
|
|
|
|
|
|
|
The :mod:`machine` module::
|
|
|
|
|
|
|
|
import machine
|
|
|
|
|
|
|
|
machine.freq() # get the current frequency of the CPU
|
|
|
|
machine.freq(240000000) # set the CPU frequency to 240 MHz
|
|
|
|
|
|
|
|
The :mod:`rp2` module::
|
|
|
|
|
|
|
|
import rp2
|
|
|
|
|
|
|
|
Delay and timing
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Use the :mod:`time <utime>` module::
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
time.sleep(1) # sleep for 1 second
|
|
|
|
time.sleep_ms(500) # sleep for 500 milliseconds
|
|
|
|
time.sleep_us(10) # sleep for 10 microseconds
|
|
|
|
start = time.ticks_ms() # get millisecond counter
|
|
|
|
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference
|
|
|
|
|
|
|
|
Timers
|
|
|
|
------
|
|
|
|
|
|
|
|
How do they work?
|
|
|
|
|
|
|
|
.. _rp2_Pins_and_GPIO:
|
|
|
|
|
|
|
|
Pins and GPIO
|
|
|
|
-------------
|
|
|
|
|
|
|
|
Use the :ref:`machine.Pin <machine.Pin>` class::
|
|
|
|
|
|
|
|
from machine import Pin
|
|
|
|
|
|
|
|
p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
|
|
|
|
p0.on() # set pin to "on" (high) level
|
|
|
|
p0.off() # set pin to "off" (low) level
|
|
|
|
p0.value(1) # set pin to on/high
|
|
|
|
|
|
|
|
p2 = Pin(2, Pin.IN) # create input pin on GPIO2
|
|
|
|
print(p2.value()) # get value, 0 or 1
|
|
|
|
|
|
|
|
p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
|
|
|
|
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
|
|
|
|
|
|
|
|
UART (serial bus)
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
See :ref:`machine.UART <machine.UART>`. ::
|
|
|
|
|
|
|
|
from machine import UART
|
|
|
|
|
|
|
|
uart1 = UART(1, baudrate=9600, tx=33, rx=32)
|
|
|
|
uart1.write('hello') # write 5 bytes
|
|
|
|
uart1.read(5) # read up to 5 bytes
|
|
|
|
|
|
|
|
|
|
|
|
PWM (pulse width modulation)
|
|
|
|
----------------------------
|
|
|
|
|
|
|
|
How does PWM work on the RPi RP2xxx?
|
|
|
|
|
|
|
|
Use the ``machine.PWM`` class::
|
|
|
|
|
|
|
|
from machine import Pin, PWM
|
|
|
|
|
|
|
|
pwm0 = PWM(Pin(0)) # create PWM object from a pin
|
|
|
|
pwm0.freq() # get current frequency
|
|
|
|
pwm0.freq(1000) # set frequency
|
|
|
|
pwm0.duty_u16() # get current duty cycle, range 0-65535
|
|
|
|
pwm0.duty_u16(200) # set duty cycle, range 0-65535
|
|
|
|
pwm0.deinit() # turn off PWM on the pin
|
|
|
|
|
|
|
|
ADC (analog to digital conversion)
|
|
|
|
----------------------------------
|
|
|
|
|
|
|
|
How does the ADC module work?
|
|
|
|
|
|
|
|
Use the :ref:`machine.ADC <machine.ADC>` class::
|
|
|
|
|
|
|
|
from machine import ADC
|
|
|
|
|
|
|
|
adc = ADC(Pin(32)) # create ADC object on ADC pin
|
|
|
|
adc.read_u16() # read value, 0-65535 across voltage range 0.0v - 3.3v
|
|
|
|
|
|
|
|
Software SPI bus
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Software SPI (using bit-banging) works on all pins, and is accessed via the
|
|
|
|
:ref:`machine.SoftSPI <machine.SoftSPI>` class::
|
|
|
|
|
|
|
|
from machine import Pin, SoftSPI
|
|
|
|
|
|
|
|
# construct a SoftSPI bus on the given pins
|
|
|
|
# polarity is the idle state of SCK
|
|
|
|
# phase=0 means sample on the first edge of SCK, phase=1 means the second
|
|
|
|
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))
|
|
|
|
|
|
|
|
spi.init(baudrate=200000) # set the baudrate
|
|
|
|
|
|
|
|
spi.read(10) # read 10 bytes on MISO
|
|
|
|
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI
|
|
|
|
|
|
|
|
buf = bytearray(50) # create a buffer
|
|
|
|
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
|
|
|
|
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
|
|
|
|
|
|
|
|
spi.write(b'12345') # write 5 bytes on MOSI
|
|
|
|
|
|
|
|
buf = bytearray(4) # create a buffer
|
|
|
|
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
|
|
|
|
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf
|
|
|
|
|
|
|
|
.. Warning::
|
|
|
|
Currently *all* of ``sck``, ``mosi`` and ``miso`` *must* be specified when
|
|
|
|
initialising Software SPI.
|
|
|
|
|
|
|
|
Hardware SPI bus
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Hardware SPI is accessed via the :ref:`machine.SPI <machine.SPI>` class and
|
|
|
|
has the same methods as software SPI above::
|
|
|
|
|
|
|
|
from machine import Pin, SPI
|
|
|
|
|
|
|
|
spi = SPI(1, 10000000)
|
|
|
|
spi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
|
|
|
|
spi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18), mosi=Pin(23), miso=Pin(19))
|
|
|
|
|
|
|
|
Software I2C bus
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Software I2C (using bit-banging) works on all output-capable pins, and is
|
|
|
|
accessed via the :ref:`machine.SoftI2C <machine.SoftI2C>` class::
|
|
|
|
|
|
|
|
from machine import Pin, SoftI2C
|
|
|
|
|
|
|
|
i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)
|
|
|
|
|
|
|
|
i2c.scan() # scan for devices
|
|
|
|
|
|
|
|
i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
|
|
|
|
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a
|
|
|
|
|
|
|
|
buf = bytearray(10) # create a buffer with 10 bytes
|
|
|
|
i2c.writeto(0x3a, buf) # write the given buffer to the slave
|
|
|
|
|
|
|
|
Hardware I2C bus
|
|
|
|
----------------
|
|
|
|
|
|
|
|
The driver is accessed via the :ref:`machine.I2C <machine.I2C>` class and
|
|
|
|
has the same methods as software I2C above::
|
|
|
|
|
|
|
|
from machine import Pin, I2C
|
|
|
|
|
|
|
|
i2c = I2C(0)
|
|
|
|
i2c = I2C(1, scl=Pin(5), sda=Pin(4), freq=400000)
|
|
|
|
|
|
|
|
Real time clock (RTC)
|
|
|
|
---------------------
|
|
|
|
|
|
|
|
See :ref:`machine.RTC <machine.RTC>` ::
|
|
|
|
|
|
|
|
from machine import RTC
|
|
|
|
|
|
|
|
rtc = RTC()
|
2021-06-20 10:44:16 +01:00
|
|
|
rtc.datetime((2017, 8, 23, 2, 12, 48, 0, 0)) # set a specific date and time
|
2021-05-23 08:20:43 +01:00
|
|
|
rtc.datetime() # get date and time
|
|
|
|
|
|
|
|
WDT (Watchdog timer)
|
|
|
|
--------------------
|
|
|
|
|
|
|
|
Is there a watchdog timer?
|
|
|
|
|
|
|
|
See :ref:`machine.WDT <machine.WDT>`. ::
|
|
|
|
|
|
|
|
from machine import WDT
|
|
|
|
|
|
|
|
# enable the WDT with a timeout of 5s (1s is the minimum)
|
|
|
|
wdt = WDT(timeout=5000)
|
|
|
|
wdt.feed()
|
|
|
|
|
|
|
|
Deep-sleep mode
|
|
|
|
---------------
|
|
|
|
|
|
|
|
Is there deep-sleep support for the rp2?
|
|
|
|
|
|
|
|
The following code can be used to sleep, wake and check the reset cause::
|
|
|
|
|
|
|
|
import machine
|
|
|
|
|
|
|
|
# check if the device woke from a deep sleep
|
|
|
|
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
|
|
|
|
print('woke from a deep sleep')
|
|
|
|
|
|
|
|
# put the device to sleep for 10 seconds
|
|
|
|
machine.deepsleep(10000)
|
|
|
|
|
|
|
|
OneWire driver
|
|
|
|
--------------
|
|
|
|
|
|
|
|
The OneWire driver is implemented in software and works on all pins::
|
|
|
|
|
|
|
|
from machine import Pin
|
|
|
|
import onewire
|
|
|
|
|
|
|
|
ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
|
|
|
|
ow.scan() # return a list of devices on the bus
|
|
|
|
ow.reset() # reset the bus
|
|
|
|
ow.readbyte() # read a byte
|
|
|
|
ow.writebyte(0x12) # write a byte on the bus
|
|
|
|
ow.write('123') # write bytes on the bus
|
|
|
|
ow.select_rom(b'12345678') # select a specific device by its ROM code
|
|
|
|
|
|
|
|
There is a specific driver for DS18S20 and DS18B20 devices::
|
|
|
|
|
|
|
|
import time, ds18x20
|
|
|
|
ds = ds18x20.DS18X20(ow)
|
|
|
|
roms = ds.scan()
|
|
|
|
ds.convert_temp()
|
|
|
|
time.sleep_ms(750)
|
|
|
|
for rom in roms:
|
|
|
|
print(ds.read_temp(rom))
|
|
|
|
|
|
|
|
Be sure to put a 4.7k pull-up resistor on the data line. Note that
|
|
|
|
the ``convert_temp()`` method must be called each time you want to
|
|
|
|
sample the temperature.
|
|
|
|
|
|
|
|
NeoPixel and APA106 driver
|
|
|
|
--------------------------
|
|
|
|
|
|
|
|
Use the ``neopixel`` and ``apa106`` modules::
|
|
|
|
|
|
|
|
from machine import Pin
|
|
|
|
from neopixel import NeoPixel
|
|
|
|
|
|
|
|
pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
|
|
|
|
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
|
|
|
|
np[0] = (255, 255, 255) # set the first pixel to white
|
|
|
|
np.write() # write data to all pixels
|
|
|
|
r, g, b = np[0] # get first pixel colour
|
|
|
|
|
|
|
|
|
|
|
|
The APA106 driver extends NeoPixel, but internally uses a different colour order::
|
|
|
|
|
|
|
|
from apa106 import APA106
|
|
|
|
ap = APA106(pin, 8)
|
|
|
|
r, g, b = ap[0]
|
|
|
|
|
|
|
|
APA102 (DotStar) uses a different driver as it has an additional clock pin.
|