micropython/ports/esp32/network_wlan.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

686 lines
27 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* Development of the code in this file was sponsored by Microbric Pty Ltd
* and Mnemote Pty Ltd
*
* The MIT License (MIT)
*
* Copyright (c) 2016, 2017 Nick Moore @mnemote
* Copyright (c) 2017 "Eric Poulsen" <eric@zyxod.com>
*
* Based on esp8266/modnetwork.c which is Copyright (c) 2015 Paul Sokolovsky
* And the ESP IDF example code which is Public Domain / CC0
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/objlist.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/modnetwork.h"
#include "modnetwork.h"
#include "esp_wifi.h"
#include "esp_log.h"
#ifndef NO_QSTR
#include "mdns.h"
#endif
#if MICROPY_PY_NETWORK_WLAN
#if (WIFI_MODE_STA & WIFI_MODE_AP != WIFI_MODE_NULL || WIFI_MODE_STA | WIFI_MODE_AP != WIFI_MODE_APSTA)
#error WIFI_MODE_STA and WIFI_MODE_AP are supposed to be bitfields!
#endif
typedef base_if_obj_t wlan_if_obj_t;
STATIC wlan_if_obj_t wlan_sta_obj;
STATIC wlan_if_obj_t wlan_ap_obj;
// Set to "true" if esp_wifi_start() was called
static bool wifi_started = false;
// Set to "true" if the STA interface is requested to be connected by the
// user, used for automatic reassociation.
static bool wifi_sta_connect_requested = false;
// Set to "true" if the STA interface is connected to wifi and has IP address.
static bool wifi_sta_connected = false;
// Store the current status. 0 means None here, safe to do so as first enum value is WIFI_REASON_UNSPECIFIED=1.
static uint8_t wifi_sta_disconn_reason = 0;
#if MICROPY_HW_ENABLE_MDNS_QUERIES || MICROPY_HW_ENABLE_MDNS_RESPONDER
// Whether mDNS has been initialised or not
static bool mdns_initialised = false;
#endif
static uint8_t conf_wifi_sta_reconnects = 0;
static volatile uint8_t wifi_sta_reconnects;
// This function is called by the system-event task and so runs in a different
// thread to the main MicroPython task. It must not raise any Python exceptions.
static void network_wlan_wifi_event_handler(void *event_handler_arg, esp_event_base_t event_base, int32_t event_id, void *event_data) {
switch (event_id) {
case WIFI_EVENT_STA_START:
ESP_LOGI("wifi", "STA_START");
wifi_sta_reconnects = 0;
break;
case WIFI_EVENT_STA_CONNECTED:
ESP_LOGI("network", "CONNECTED");
break;
case WIFI_EVENT_STA_DISCONNECTED: {
// This is a workaround as ESP32 WiFi libs don't currently
// auto-reassociate.
wifi_event_sta_disconnected_t *disconn = event_data;
char *message = "";
wifi_sta_disconn_reason = disconn->reason;
switch (disconn->reason) {
case WIFI_REASON_BEACON_TIMEOUT:
// AP has dropped out; try to reconnect.
message = "\nbeacon timeout";
break;
case WIFI_REASON_NO_AP_FOUND:
// AP may not exist, or it may have momentarily dropped out; try to reconnect.
message = "\nno AP found";
break;
case WIFI_REASON_AUTH_FAIL:
// Password may be wrong, or it just failed to connect; try to reconnect.
message = "\nauthentication failed";
break;
default:
// Let other errors through and try to reconnect.
break;
}
ESP_LOGI("wifi", "STA_DISCONNECTED, reason:%d%s", disconn->reason, message);
wifi_sta_connected = false;
if (wifi_sta_connect_requested) {
wifi_mode_t mode;
if (esp_wifi_get_mode(&mode) != ESP_OK) {
break;
}
if (!(mode & WIFI_MODE_STA)) {
break;
}
if (conf_wifi_sta_reconnects) {
ESP_LOGI("wifi", "reconnect counter=%d, max=%d",
wifi_sta_reconnects, conf_wifi_sta_reconnects);
if (++wifi_sta_reconnects >= conf_wifi_sta_reconnects) {
break;
}
}
esp_err_t e = esp_wifi_connect();
if (e != ESP_OK) {
ESP_LOGI("wifi", "error attempting to reconnect: 0x%04x", e);
}
}
break;
}
default:
break;
}
}
static void network_wlan_ip_event_handler(void *event_handler_arg, esp_event_base_t event_base, int32_t event_id, void *event_data) {
switch (event_id) {
case IP_EVENT_STA_GOT_IP:
ESP_LOGI("network", "GOT_IP");
wifi_sta_connected = true;
wifi_sta_disconn_reason = 0; // Success so clear error. (in case of new error will be replaced anyway)
#if MICROPY_HW_ENABLE_MDNS_QUERIES || MICROPY_HW_ENABLE_MDNS_RESPONDER
if (!mdns_initialised) {
mdns_init();
#if MICROPY_HW_ENABLE_MDNS_RESPONDER
mdns_hostname_set(mod_network_hostname);
mdns_instance_name_set(mod_network_hostname);
#endif
mdns_initialised = true;
}
#endif
break;
default:
break;
}
}
STATIC void require_if(mp_obj_t wlan_if, int if_no) {
wlan_if_obj_t *self = MP_OBJ_TO_PTR(wlan_if);
if (self->if_id != if_no) {
mp_raise_msg(&mp_type_OSError, if_no == ESP_IF_WIFI_STA ? MP_ERROR_TEXT("STA required") : MP_ERROR_TEXT("AP required"));
}
}
void esp_initialise_wifi(void) {
esp32,esp8266: Add support for the Espressif ESP-NOW protocol. ESP-NOW is a proprietary wireless communication protocol which supports connectionless communication between ESP32 and ESP8266 devices, using vendor specific WiFi frames. This commit adds support for this protocol through a new `espnow` module. This commit builds on original work done by @nickzoic, @shawwwn and with contributions from @zoland. Features include: - Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO. - Signal strength (RSSI) monitoring. - Core support in `_espnow` C module, extended by `espnow.py` module. - Asyncio support via `aioespnow.py` module (separate to this commit). - Docs provided at `docs/library/espnow.rst`. Methods available in espnow.ESPNow class are: - active(True/False) - config(): set rx buffer size, read timeout and tx rate - recv()/irecv()/recvinto() to read incoming messages from peers - send() to send messages to peer devices - any() to test if a message is ready to read - irq() to set callback for received messages - stats() returns transfer stats: (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts) - add_peer(mac, ...) registers a peer before sending messages - get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt) - mod_peer(mac, ...) changes peer info parameters - get_peers() returns all peer info tuples - peers_table supports RSSI signal monitoring for received messages: {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...} ESP8266 is a pared down version of the ESP32 ESPNow support due to code size restrictions and differences in the low-level API. See docs for details. Also included is a test suite in tests/multi_espnow. This tests basic espnow data transfer, multiple transfers, various message sizes, encrypted messages (pmk and lmk), and asyncio support. Initial work is from https://github.com/micropython/micropython/pull/4115. Initial import of code is from: https://github.com/nickzoic/micropython/tree/espnow-4115.
2020-09-24 06:37:04 +01:00
static int wifi_initialized = 0;
if (!wifi_initialized) {
esp_exceptions(esp_event_handler_instance_register(WIFI_EVENT, ESP_EVENT_ANY_ID, network_wlan_wifi_event_handler, NULL, NULL));
esp_exceptions(esp_event_handler_instance_register(IP_EVENT, ESP_EVENT_ANY_ID, network_wlan_ip_event_handler, NULL, NULL));
wlan_sta_obj.base.type = &esp_network_wlan_type;
wlan_sta_obj.if_id = ESP_IF_WIFI_STA;
wlan_sta_obj.netif = esp_netif_create_default_wifi_sta();
wlan_ap_obj.base.type = &esp_network_wlan_type;
wlan_ap_obj.if_id = ESP_IF_WIFI_AP;
wlan_ap_obj.netif = esp_netif_create_default_wifi_ap();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_LOGD("modnetwork", "Initializing WiFi");
esp_exceptions(esp_wifi_init(&cfg));
esp_exceptions(esp_wifi_set_storage(WIFI_STORAGE_RAM));
ESP_LOGD("modnetwork", "Initialized");
esp32,esp8266: Add support for the Espressif ESP-NOW protocol. ESP-NOW is a proprietary wireless communication protocol which supports connectionless communication between ESP32 and ESP8266 devices, using vendor specific WiFi frames. This commit adds support for this protocol through a new `espnow` module. This commit builds on original work done by @nickzoic, @shawwwn and with contributions from @zoland. Features include: - Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO. - Signal strength (RSSI) monitoring. - Core support in `_espnow` C module, extended by `espnow.py` module. - Asyncio support via `aioespnow.py` module (separate to this commit). - Docs provided at `docs/library/espnow.rst`. Methods available in espnow.ESPNow class are: - active(True/False) - config(): set rx buffer size, read timeout and tx rate - recv()/irecv()/recvinto() to read incoming messages from peers - send() to send messages to peer devices - any() to test if a message is ready to read - irq() to set callback for received messages - stats() returns transfer stats: (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts) - add_peer(mac, ...) registers a peer before sending messages - get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt) - mod_peer(mac, ...) changes peer info parameters - get_peers() returns all peer info tuples - peers_table supports RSSI signal monitoring for received messages: {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...} ESP8266 is a pared down version of the ESP32 ESPNow support due to code size restrictions and differences in the low-level API. See docs for details. Also included is a test suite in tests/multi_espnow. This tests basic espnow data transfer, multiple transfers, various message sizes, encrypted messages (pmk and lmk), and asyncio support. Initial work is from https://github.com/micropython/micropython/pull/4115. Initial import of code is from: https://github.com/nickzoic/micropython/tree/espnow-4115.
2020-09-24 06:37:04 +01:00
wifi_initialized = 1;
}
esp32,esp8266: Add support for the Espressif ESP-NOW protocol. ESP-NOW is a proprietary wireless communication protocol which supports connectionless communication between ESP32 and ESP8266 devices, using vendor specific WiFi frames. This commit adds support for this protocol through a new `espnow` module. This commit builds on original work done by @nickzoic, @shawwwn and with contributions from @zoland. Features include: - Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO. - Signal strength (RSSI) monitoring. - Core support in `_espnow` C module, extended by `espnow.py` module. - Asyncio support via `aioespnow.py` module (separate to this commit). - Docs provided at `docs/library/espnow.rst`. Methods available in espnow.ESPNow class are: - active(True/False) - config(): set rx buffer size, read timeout and tx rate - recv()/irecv()/recvinto() to read incoming messages from peers - send() to send messages to peer devices - any() to test if a message is ready to read - irq() to set callback for received messages - stats() returns transfer stats: (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts) - add_peer(mac, ...) registers a peer before sending messages - get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt) - mod_peer(mac, ...) changes peer info parameters - get_peers() returns all peer info tuples - peers_table supports RSSI signal monitoring for received messages: {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...} ESP8266 is a pared down version of the ESP32 ESPNow support due to code size restrictions and differences in the low-level API. See docs for details. Also included is a test suite in tests/multi_espnow. This tests basic espnow data transfer, multiple transfers, various message sizes, encrypted messages (pmk and lmk), and asyncio support. Initial work is from https://github.com/micropython/micropython/pull/4115. Initial import of code is from: https://github.com/nickzoic/micropython/tree/espnow-4115.
2020-09-24 06:37:04 +01:00
}
STATIC mp_obj_t network_wlan_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
esp32,esp8266: Add support for the Espressif ESP-NOW protocol. ESP-NOW is a proprietary wireless communication protocol which supports connectionless communication between ESP32 and ESP8266 devices, using vendor specific WiFi frames. This commit adds support for this protocol through a new `espnow` module. This commit builds on original work done by @nickzoic, @shawwwn and with contributions from @zoland. Features include: - Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO. - Signal strength (RSSI) monitoring. - Core support in `_espnow` C module, extended by `espnow.py` module. - Asyncio support via `aioespnow.py` module (separate to this commit). - Docs provided at `docs/library/espnow.rst`. Methods available in espnow.ESPNow class are: - active(True/False) - config(): set rx buffer size, read timeout and tx rate - recv()/irecv()/recvinto() to read incoming messages from peers - send() to send messages to peer devices - any() to test if a message is ready to read - irq() to set callback for received messages - stats() returns transfer stats: (tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts) - add_peer(mac, ...) registers a peer before sending messages - get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt) - mod_peer(mac, ...) changes peer info parameters - get_peers() returns all peer info tuples - peers_table supports RSSI signal monitoring for received messages: {peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...} ESP8266 is a pared down version of the ESP32 ESPNow support due to code size restrictions and differences in the low-level API. See docs for details. Also included is a test suite in tests/multi_espnow. This tests basic espnow data transfer, multiple transfers, various message sizes, encrypted messages (pmk and lmk), and asyncio support. Initial work is from https://github.com/micropython/micropython/pull/4115. Initial import of code is from: https://github.com/nickzoic/micropython/tree/espnow-4115.
2020-09-24 06:37:04 +01:00
esp_initialise_wifi();
int idx = (n_args > 0) ? mp_obj_get_int(args[0]) : ESP_IF_WIFI_STA;
if (idx == ESP_IF_WIFI_STA) {
return MP_OBJ_FROM_PTR(&wlan_sta_obj);
} else if (idx == ESP_IF_WIFI_AP) {
return MP_OBJ_FROM_PTR(&wlan_ap_obj);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid WLAN interface identifier"));
}
}
STATIC mp_obj_t network_wlan_active(size_t n_args, const mp_obj_t *args) {
wlan_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
wifi_mode_t mode;
if (!wifi_started) {
mode = WIFI_MODE_NULL;
} else {
esp_exceptions(esp_wifi_get_mode(&mode));
}
int bit = (self->if_id == ESP_IF_WIFI_STA) ? WIFI_MODE_STA : WIFI_MODE_AP;
if (n_args > 1) {
bool active = mp_obj_is_true(args[1]);
mode = active ? (mode | bit) : (mode & ~bit);
if (mode == WIFI_MODE_NULL) {
if (wifi_started) {
esp_exceptions(esp_wifi_stop());
wifi_started = false;
}
} else {
esp_exceptions(esp_wifi_set_mode(mode));
if (!wifi_started) {
// WIFI_EVENT_STA_START must be received before esp_wifi_connect() can be called.
// Use the `wifi_sta_reconnects` variable to detect that event.
wifi_sta_reconnects = 1;
esp_exceptions(esp_wifi_start());
wifi_started = true;
while (wifi_sta_reconnects != 0) {
MICROPY_EVENT_POLL_HOOK;
}
}
}
}
return (mode & bit) ? mp_const_true : mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_wlan_active_obj, 1, 2, network_wlan_active);
STATIC mp_obj_t network_wlan_connect(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_ssid, ARG_key, ARG_bssid };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
wifi_config_t wifi_sta_config = {0};
// configure any parameters that are given
if (n_args > 1) {
size_t len;
const char *p;
if (args[ARG_ssid].u_obj != mp_const_none) {
p = mp_obj_str_get_data(args[ARG_ssid].u_obj, &len);
memcpy(wifi_sta_config.sta.ssid, p, MIN(len, sizeof(wifi_sta_config.sta.ssid)));
}
if (args[ARG_key].u_obj != mp_const_none) {
p = mp_obj_str_get_data(args[ARG_key].u_obj, &len);
memcpy(wifi_sta_config.sta.password, p, MIN(len, sizeof(wifi_sta_config.sta.password)));
}
if (args[ARG_bssid].u_obj != mp_const_none) {
p = mp_obj_str_get_data(args[ARG_bssid].u_obj, &len);
if (len != sizeof(wifi_sta_config.sta.bssid)) {
mp_raise_ValueError(NULL);
}
wifi_sta_config.sta.bssid_set = 1;
memcpy(wifi_sta_config.sta.bssid, p, sizeof(wifi_sta_config.sta.bssid));
}
esp_exceptions(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_sta_config));
}
esp_exceptions(esp_netif_set_hostname(wlan_sta_obj.netif, mod_network_hostname));
wifi_sta_reconnects = 0;
// connect to the WiFi AP
MP_THREAD_GIL_EXIT();
esp_exceptions(esp_wifi_connect());
MP_THREAD_GIL_ENTER();
wifi_sta_connect_requested = true;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(network_wlan_connect_obj, 1, network_wlan_connect);
STATIC mp_obj_t network_wlan_disconnect(mp_obj_t self_in) {
wifi_sta_connect_requested = false;
esp_exceptions(esp_wifi_disconnect());
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(network_wlan_disconnect_obj, network_wlan_disconnect);
STATIC mp_obj_t network_wlan_status(size_t n_args, const mp_obj_t *args) {
wlan_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
if (self->if_id == ESP_IF_WIFI_STA) {
// Case of no arg is only for the STA interface
if (wifi_sta_connected) {
// Happy path, connected with IP
return MP_OBJ_NEW_SMALL_INT(STAT_GOT_IP);
} else if (wifi_sta_connect_requested
&& (conf_wifi_sta_reconnects == 0
|| wifi_sta_reconnects < conf_wifi_sta_reconnects)) {
// No connection or error, but is requested = Still connecting
return MP_OBJ_NEW_SMALL_INT(STAT_CONNECTING);
} else if (wifi_sta_disconn_reason == 0) {
// No activity, No error = Idle
return MP_OBJ_NEW_SMALL_INT(STAT_IDLE);
} else {
// Simply pass the error through from ESP-identifier
return MP_OBJ_NEW_SMALL_INT(wifi_sta_disconn_reason);
}
}
return mp_const_none;
}
// one argument: return status based on query parameter
switch ((uintptr_t)args[1]) {
case (uintptr_t)MP_OBJ_NEW_QSTR(MP_QSTR_stations): {
// return list of connected stations, only if in soft-AP mode
require_if(args[0], ESP_IF_WIFI_AP);
wifi_sta_list_t station_list;
esp_exceptions(esp_wifi_ap_get_sta_list(&station_list));
wifi_sta_info_t *stations = (wifi_sta_info_t *)station_list.sta;
mp_obj_t list = mp_obj_new_list(0, NULL);
for (int i = 0; i < station_list.num; ++i) {
mp_obj_tuple_t *t = mp_obj_new_tuple(1, NULL);
t->items[0] = mp_obj_new_bytes(stations[i].mac, sizeof(stations[i].mac));
mp_obj_list_append(list, t);
}
return list;
}
case (uintptr_t)MP_OBJ_NEW_QSTR(MP_QSTR_rssi): {
// return signal of AP, only in STA mode
require_if(args[0], ESP_IF_WIFI_STA);
wifi_ap_record_t info;
esp_exceptions(esp_wifi_sta_get_ap_info(&info));
return MP_OBJ_NEW_SMALL_INT(info.rssi);
}
default:
mp_raise_ValueError(MP_ERROR_TEXT("unknown status param"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_wlan_status_obj, 1, 2, network_wlan_status);
STATIC mp_obj_t network_wlan_scan(mp_obj_t self_in) {
// check that STA mode is active
wifi_mode_t mode;
esp_exceptions(esp_wifi_get_mode(&mode));
if ((mode & WIFI_MODE_STA) == 0) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("STA must be active"));
}
mp_obj_t list = mp_obj_new_list(0, NULL);
wifi_scan_config_t config = { 0 };
config.show_hidden = true;
MP_THREAD_GIL_EXIT();
esp_err_t status = esp_wifi_scan_start(&config, 1);
MP_THREAD_GIL_ENTER();
if (status == 0) {
uint16_t count = 0;
esp_exceptions(esp_wifi_scan_get_ap_num(&count));
if (count == 0) {
// esp_wifi_scan_get_ap_records must be called to free internal buffers from the scan.
// But it returns an error if wifi_ap_records==NULL. So allocate at least 1 AP entry.
// esp_wifi_scan_get_ap_records will then return the actual number of APs in count.
count = 1;
}
wifi_ap_record_t *wifi_ap_records = calloc(count, sizeof(wifi_ap_record_t));
esp_exceptions(esp_wifi_scan_get_ap_records(&count, wifi_ap_records));
for (uint16_t i = 0; i < count; i++) {
mp_obj_tuple_t *t = mp_obj_new_tuple(6, NULL);
uint8_t *x = memchr(wifi_ap_records[i].ssid, 0, sizeof(wifi_ap_records[i].ssid));
int ssid_len = x ? x - wifi_ap_records[i].ssid : sizeof(wifi_ap_records[i].ssid);
t->items[0] = mp_obj_new_bytes(wifi_ap_records[i].ssid, ssid_len);
t->items[1] = mp_obj_new_bytes(wifi_ap_records[i].bssid, sizeof(wifi_ap_records[i].bssid));
t->items[2] = MP_OBJ_NEW_SMALL_INT(wifi_ap_records[i].primary);
t->items[3] = MP_OBJ_NEW_SMALL_INT(wifi_ap_records[i].rssi);
t->items[4] = MP_OBJ_NEW_SMALL_INT(wifi_ap_records[i].authmode);
t->items[5] = mp_const_false; // XXX hidden?
mp_obj_list_append(list, MP_OBJ_FROM_PTR(t));
}
free(wifi_ap_records);
}
return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(network_wlan_scan_obj, network_wlan_scan);
STATIC mp_obj_t network_wlan_isconnected(mp_obj_t self_in) {
wlan_if_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->if_id == ESP_IF_WIFI_STA) {
return mp_obj_new_bool(wifi_sta_connected);
} else {
wifi_sta_list_t sta;
esp_wifi_ap_get_sta_list(&sta);
return mp_obj_new_bool(sta.num != 0);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(network_wlan_isconnected_obj, network_wlan_isconnected);
STATIC mp_obj_t network_wlan_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
if (n_args != 1 && kwargs->used != 0) {
mp_raise_TypeError(MP_ERROR_TEXT("either pos or kw args are allowed"));
}
wlan_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
bool is_wifi = self->if_id == ESP_IF_WIFI_AP || self->if_id == ESP_IF_WIFI_STA;
wifi_config_t cfg;
if (is_wifi) {
esp_exceptions(esp_wifi_get_config(self->if_id, &cfg));
}
if (kwargs->used != 0) {
if (!is_wifi) {
goto unknown;
}
for (size_t i = 0; i < kwargs->alloc; i++) {
if (mp_map_slot_is_filled(kwargs, i)) {
int req_if = -1;
switch (mp_obj_str_get_qstr(kwargs->table[i].key)) {
case MP_QSTR_mac: {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(kwargs->table[i].value, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len != 6) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length"));
}
esp_exceptions(esp_wifi_set_mac(self->if_id, bufinfo.buf));
break;
}
case MP_QSTR_ssid:
case MP_QSTR_essid: {
req_if = ESP_IF_WIFI_AP;
size_t len;
const char *s = mp_obj_str_get_data(kwargs->table[i].value, &len);
len = MIN(len, sizeof(cfg.ap.ssid));
memcpy(cfg.ap.ssid, s, len);
cfg.ap.ssid_len = len;
break;
}
case MP_QSTR_hidden: {
req_if = ESP_IF_WIFI_AP;
cfg.ap.ssid_hidden = mp_obj_is_true(kwargs->table[i].value);
break;
}
case MP_QSTR_security:
case MP_QSTR_authmode: {
req_if = ESP_IF_WIFI_AP;
cfg.ap.authmode = mp_obj_get_int(kwargs->table[i].value);
break;
}
case MP_QSTR_key:
case MP_QSTR_password: {
req_if = ESP_IF_WIFI_AP;
size_t len;
const char *s = mp_obj_str_get_data(kwargs->table[i].value, &len);
len = MIN(len, sizeof(cfg.ap.password) - 1);
memcpy(cfg.ap.password, s, len);
cfg.ap.password[len] = 0;
break;
}
case MP_QSTR_channel: {
uint8_t primary;
wifi_second_chan_t secondary;
// Get the current value of secondary
esp_exceptions(esp_wifi_get_channel(&primary, &secondary));
primary = mp_obj_get_int(kwargs->table[i].value);
esp_err_t err = esp_wifi_set_channel(primary, secondary);
if (err == ESP_ERR_INVALID_ARG) {
// May need to swap secondary channel above to below or below to above
secondary = (
(secondary == WIFI_SECOND_CHAN_ABOVE)
? WIFI_SECOND_CHAN_BELOW
: (secondary == WIFI_SECOND_CHAN_BELOW)
? WIFI_SECOND_CHAN_ABOVE
: WIFI_SECOND_CHAN_NONE);
esp_exceptions(esp_wifi_set_channel(primary, secondary));
}
break;
}
case MP_QSTR_hostname:
case MP_QSTR_dhcp_hostname: {
// TODO: Deprecated. Use network.hostname(name) instead.
size_t len;
const char *str = mp_obj_str_get_data(kwargs->table[i].value, &len);
if (len >= MICROPY_PY_NETWORK_HOSTNAME_MAX_LEN) {
mp_raise_ValueError(NULL);
}
strcpy(mod_network_hostname, str);
break;
}
case MP_QSTR_max_clients: {
req_if = ESP_IF_WIFI_AP;
cfg.ap.max_connection = mp_obj_get_int(kwargs->table[i].value);
break;
}
case MP_QSTR_reconnects: {
int reconnects = mp_obj_get_int(kwargs->table[i].value);
req_if = ESP_IF_WIFI_STA;
// parameter reconnects == -1 means to retry forever.
// here means conf_wifi_sta_reconnects == 0 to retry forever.
conf_wifi_sta_reconnects = (reconnects == -1) ? 0 : reconnects + 1;
break;
}
case MP_QSTR_txpower: {
int8_t power = (mp_obj_get_float(kwargs->table[i].value) * 4);
esp_exceptions(esp_wifi_set_max_tx_power(power));
break;
}
case MP_QSTR_protocol: {
esp_exceptions(esp_wifi_set_protocol(self->if_id, mp_obj_get_int(kwargs->table[i].value)));
break;
}
case MP_QSTR_pm: {
esp_exceptions(esp_wifi_set_ps(mp_obj_get_int(kwargs->table[i].value)));
break;
}
default:
goto unknown;
}
// We post-check interface requirements to save on code size
if (req_if >= 0) {
require_if(args[0], req_if);
}
}
}
esp_exceptions(esp_wifi_set_config(self->if_id, &cfg));
return mp_const_none;
}
// Get config
if (n_args != 2) {
mp_raise_TypeError(MP_ERROR_TEXT("can query only one param"));
}
int req_if = -1;
mp_obj_t val = mp_const_none;
switch (mp_obj_str_get_qstr(args[1])) {
case MP_QSTR_mac: {
uint8_t mac[6];
switch (self->if_id) {
case ESP_IF_WIFI_AP: // fallthrough intentional
case ESP_IF_WIFI_STA:
esp_exceptions(esp_wifi_get_mac(self->if_id, mac));
return mp_obj_new_bytes(mac, sizeof(mac));
default:
goto unknown;
}
}
case MP_QSTR_ssid:
case MP_QSTR_essid:
switch (self->if_id) {
case ESP_IF_WIFI_STA:
val = mp_obj_new_str((char *)cfg.sta.ssid, strlen((char *)cfg.sta.ssid));
break;
case ESP_IF_WIFI_AP:
val = mp_obj_new_str((char *)cfg.ap.ssid, cfg.ap.ssid_len);
break;
default:
req_if = ESP_IF_WIFI_AP;
}
break;
case MP_QSTR_hidden:
req_if = ESP_IF_WIFI_AP;
val = mp_obj_new_bool(cfg.ap.ssid_hidden);
break;
case MP_QSTR_security:
case MP_QSTR_authmode:
req_if = ESP_IF_WIFI_AP;
val = MP_OBJ_NEW_SMALL_INT(cfg.ap.authmode);
break;
case MP_QSTR_channel: {
uint8_t channel;
wifi_second_chan_t second;
esp_exceptions(esp_wifi_get_channel(&channel, &second));
val = MP_OBJ_NEW_SMALL_INT(channel);
break;
}
case MP_QSTR_hostname:
case MP_QSTR_dhcp_hostname: {
// TODO: Deprecated. Use network.hostname() instead.
req_if = ESP_IF_WIFI_STA;
val = mp_obj_new_str(mod_network_hostname, strlen(mod_network_hostname));
break;
}
case MP_QSTR_max_clients: {
val = MP_OBJ_NEW_SMALL_INT(cfg.ap.max_connection);
break;
}
case MP_QSTR_reconnects:
req_if = ESP_IF_WIFI_STA;
int rec = conf_wifi_sta_reconnects - 1;
val = MP_OBJ_NEW_SMALL_INT(rec);
break;
case MP_QSTR_txpower: {
int8_t power;
esp_exceptions(esp_wifi_get_max_tx_power(&power));
val = mp_obj_new_float(power * 0.25);
break;
}
case MP_QSTR_protocol: {
uint8_t protocol_bitmap;
esp_exceptions(esp_wifi_get_protocol(self->if_id, &protocol_bitmap));
val = MP_OBJ_NEW_SMALL_INT(protocol_bitmap);
break;
}
case MP_QSTR_pm: {
wifi_ps_type_t ps_type;
esp_exceptions(esp_wifi_get_ps(&ps_type));
val = MP_OBJ_NEW_SMALL_INT(ps_type);
break;
}
default:
goto unknown;
}
// We post-check interface requirements to save on code size
if (req_if >= 0) {
require_if(args[0], req_if);
}
return val;
unknown:
mp_raise_ValueError(MP_ERROR_TEXT("unknown config param"));
}
MP_DEFINE_CONST_FUN_OBJ_KW(network_wlan_config_obj, 1, network_wlan_config);
STATIC const mp_rom_map_elem_t wlan_if_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&network_wlan_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&network_wlan_connect_obj) },
{ MP_ROM_QSTR(MP_QSTR_disconnect), MP_ROM_PTR(&network_wlan_disconnect_obj) },
{ MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&network_wlan_status_obj) },
{ MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&network_wlan_scan_obj) },
{ MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&network_wlan_isconnected_obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&network_wlan_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_ifconfig), MP_ROM_PTR(&esp_network_ifconfig_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_PM_NONE), MP_ROM_INT(WIFI_PS_NONE) },
{ MP_ROM_QSTR(MP_QSTR_PM_PERFORMANCE), MP_ROM_INT(WIFI_PS_MIN_MODEM) },
{ MP_ROM_QSTR(MP_QSTR_PM_POWERSAVE), MP_ROM_INT(WIFI_PS_MAX_MODEM) },
};
STATIC MP_DEFINE_CONST_DICT(wlan_if_locals_dict, wlan_if_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
esp_network_wlan_type,
MP_QSTR_WLAN,
MP_TYPE_FLAG_NONE,
make_new, network_wlan_make_new,
locals_dict, &wlan_if_locals_dict
);
#endif // MICROPY_PY_NETWORK_WLAN