micropython/ports/renesas-ra/flashbdev.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

298 lines
10 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/mperrno.h"
#include "irq.h"
#include "led.h"
#include "flash.h"
#include "storage.h"
#include "ra_flash.h"
#if MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE
#if MICROPY_HW_HAS_QSPI_FLASH
// The linker script specifies flash storage locations.
extern uint8_t _micropy_hw_external_flash_storage_start;
extern uint8_t _micropy_hw_external_flash_storage_end;
#define FLASH_MEM_SEG1_START_ADDR \
((long)&_micropy_hw_external_flash_storage_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS \
((&_micropy_hw_external_flash_storage_end - &_micropy_hw_external_flash_storage_start) / 512)
#else
// The linker script specifies flash storage locations.
extern uint8_t _micropy_hw_internal_flash_storage_start;
extern uint8_t _micropy_hw_internal_flash_storage_end;
#define FLASH_MEM_SEG1_START_ADDR \
((long)&_micropy_hw_internal_flash_storage_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS \
((&_micropy_hw_internal_flash_storage_end - &_micropy_hw_internal_flash_storage_start) / 512)
#endif
#if defined(RA4M1) | defined(RA4M3) | defined(RA4W1)
#define FLASH_SECTOR_SIZE_MAX (0x800) // 2k max
#elif defined(RA6M1) | defined(RA6M2) | defined(RA6M3) | defined(RA6M5)
#define FLASH_SECTOR_SIZE_MAX (0x8000) // 32k max
#else
#error "no internal flash storage support for this MCU"
#endif
STATIC byte flash_cache_mem[FLASH_SECTOR_SIZE_MAX] __attribute__((aligned(16)));
#define CACHE_MEM_START_ADDR (&flash_cache_mem[0])
#if !defined(FLASH_MEM_SEG2_START_ADDR)
#define FLASH_MEM_SEG2_START_ADDR (0) // no second segment
#define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment
#endif
#define FLASH_FLAG_DIRTY (1)
#define FLASH_FLAG_FORCE_WRITE (2)
#define FLASH_FLAG_ERASED (4)
static volatile uint8_t flash_flags = 0;
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static long flash_tick_counter_last_write;
void flash_bdev_irq_handler(void);
int32_t flash_bdev_ioctl(uint32_t op, uint32_t arg) {
(void)arg;
switch (op) {
case BDEV_IOCTL_INIT:
flash_flags = 0;
flash_cache_sector_id = 0;
flash_tick_counter_last_write = 0L;
return 0;
case BDEV_IOCTL_NUM_BLOCKS:
return FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS;
case BDEV_IOCTL_IRQ_HANDLER:
flash_bdev_irq_handler();
return 0;
case BDEV_IOCTL_SYNC:
if (flash_flags & FLASH_FLAG_DIRTY) {
flash_flags |= FLASH_FLAG_FORCE_WRITE;
flash_bdev_irq_handler();
// while (flash_flags & FLASH_FLAG_DIRTY) {
// NVIC->STIR = FLASH_IRQn;
// }
}
return 0;
}
// return -MP_EINVAL;
return -1;
}
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
flash_sector_size = FLASH_SECTOR_SIZE_MAX;
}
if (flash_cache_sector_id != flash_sector_id) {
flash_bdev_ioctl(BDEV_IOCTL_SYNC, 0);
memcpy((void *)CACHE_MEM_START_ADDR, (const void *)flash_sector_start, flash_sector_size);
flash_cache_sector_id = flash_sector_id;
flash_cache_sector_start = flash_sector_start;
flash_cache_sector_size = flash_sector_size;
}
flash_flags |= FLASH_FLAG_DIRTY;
led_state(RA_LED1, 1); // indicate a dirty cache with LED on
flash_tick_counter_last_write = (long)HAL_GetTick();
return (uint8_t *)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
void flash_cache_commit(void) {
if (flash_flags & FLASH_FLAG_DIRTY) {
if (((long)HAL_GetTick() - flash_tick_counter_last_write) > 1000) {
flash_bdev_irq_handler();
}
}
}
static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_cache_sector_id == flash_sector_id) {
// in cache, copy from there
return (uint8_t *)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
// not in cache, copy straight from flash
return (uint8_t *)flash_addr;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (block < FLASH_MEM_SEG1_NUM_BLOCKS) {
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
}
if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) {
return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE;
}
// can add more flash segments here if needed, following above pattern
// bad block
return -1;
}
void flash_bdev_irq_handler(void) {
if (!(flash_flags & FLASH_FLAG_DIRTY)) {
return;
}
// This code uses interrupts to erase the flash
/*
if (flash_erase_state == 0) {
flash_erase_it(flash_cache_sector_start, flash_cache_sector_size / 4);
flash_erase_state = 1;
return;
}
if (flash_erase_state == 1) {
// wait for erase
// TODO add timeout
#define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
if (!flash_erase_done()) {
return;
}
flash_erase_state = 2;
}
*/
// This code erases the flash directly, waiting for it to finish
if (!(flash_flags & FLASH_FLAG_ERASED)) {
flash_erase(flash_cache_sector_start, flash_cache_sector_size);
flash_flags |= FLASH_FLAG_ERASED;
// return;
}
// If not a forced write, wait at least 5 seconds after last write to flush
// On file close and flash unmount we get a forced write, so we can afford to wait a while
if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || ((long)HAL_GetTick() - flash_tick_counter_last_write) >= 3000L) {
// sync the cache RAM buffer by writing it to the flash page
flash_tick_counter_last_write = 0x7fffffffL;
flash_write(flash_cache_sector_start, (const uint32_t *)CACHE_MEM_START_ADDR, flash_cache_sector_size);
// clear the flash flags now that we have a clean cache
flash_flags = 0;
// indicate a clean cache with LED off
led_state(RA_LED1, 0);
}
}
bool flash_bdev_readblock(uint8_t *dest, uint32_t block) {
// non-MBR block, get data from flash memory, possibly via cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
bool flash_bdev_is_erased(uint32_t block) {
uint32_t *start;
uint32_t *end;
bool ret = true;
uint32_t flash_addr = convert_block_to_flash_addr(block);
start = (uint32_t *)flash_addr;
end = (uint32_t *)(flash_addr + FLASH_BLOCK_SIZE);
while (start < end) {
if (*start++ != 0xffffffff) {
ret = false;
break;
}
}
return ret;
}
bool flash_bdev_writeblock(const uint8_t *src, uint32_t block) {
// non-MBR block, copy to cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
// flash_flags |= FLASH_FLAG_FORCE_WRITE;
// flash_bdev_irq_handler();
return true;
}
int flash_bdev_readblocks_ext(uint8_t *dest, uint32_t block, uint32_t offset, uint32_t len) {
// Get data from flash memory, possibly via cache
while (len) {
uint32_t l = MIN(len, FLASH_BLOCK_SIZE - offset);
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return -1;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr + offset);
memcpy(dest, src, l);
dest += l;
block += 1;
offset = 0;
len -= l;
}
return 0;
}
int flash_bdev_writeblocks_ext(const uint8_t *src, uint32_t block, uint32_t offset, uint32_t len) {
// Copy to cache
while (len) {
uint32_t l = MIN(len, FLASH_BLOCK_SIZE - offset);
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return -1;
}
// uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr + offset);
memcpy(dest, src, l);
// restore_irq_pri(basepri);
src += l;
block += 1;
offset = 0;
len -= l;
}
return 0;
}
#endif // MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE