micropython/ports/mimxrt/machine_uart.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

537 lines
20 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "py/mphal.h"
#include "ticks.h"
#include "fsl_common.h"
#include "fsl_lpuart.h"
#include "fsl_iomuxc.h"
#include CLOCK_CONFIG_H
#include "modmachine.h"
#include "pin.h"
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_BUFFER_SIZE (256)
#define MIN_BUFFER_SIZE (32)
#define MAX_BUFFER_SIZE (32766)
#define UART_HWCONTROL_RTS (1)
#define UART_HWCONTROL_CTS (2)
#define UART_HWCONTROL_MASK (UART_HWCONTROL_RTS | UART_HWCONTROL_CTS)
#define UART_INVERT_TX (1)
#define UART_INVERT_RX (2)
#define UART_INVERT_MASK (UART_INVERT_TX | UART_INVERT_RX)
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
struct _lpuart_handle handle;
lpuart_config_t config;
LPUART_Type *lpuart;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint8_t id;
uint8_t invert;
uint16_t tx_status;
uint8_t *txbuf;
uint16_t txbuf_len;
bool new;
} machine_uart_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
STATIC const uint8_t uart_index_table[] = MICROPY_HW_UART_INDEX;
STATIC LPUART_Type *uart_base_ptr_table[] = LPUART_BASE_PTRS;
static const iomux_table_t iomux_table_uart[] = {
IOMUX_TABLE_UART
};
static const iomux_table_t iomux_table_uart_cts_rts[] = {
IOMUX_TABLE_UART_CTS_RTS
};
STATIC const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3
STATIC const char *_invert_name[] = {"None", "INV_TX", "INV_RX", "INV_TX|INV_RX"};
STATIC const char *_flow_name[] = {"None", "RTS", "CTS", "RTS|CTS"};
#define RX (iomux_table_uart[index + 1])
#define TX (iomux_table_uart[index])
#define RTS (iomux_table_uart_cts_rts[index + 1])
#define CTS (iomux_table_uart_cts_rts[index])
bool lpuart_set_iomux(int8_t uart) {
int index = (uart - 1) * 2;
if (TX.muxRegister != 0) {
IOMUXC_SetPinMux(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister, 0U);
IOMUXC_SetPinConfig(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, TX.configRegister));
IOMUXC_SetPinMux(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister, 0U);
IOMUXC_SetPinConfig(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, RX.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_rts(int8_t uart) {
MP_STATIC_ASSERT(MP_ARRAY_SIZE(iomux_table_uart) == MP_ARRAY_SIZE(iomux_table_uart_cts_rts));
int index = (uart - 1) * 2;
if (RTS.muxRegister != 0) {
IOMUXC_SetPinMux(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister, 0U);
IOMUXC_SetPinConfig(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, RTS.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_cts(int8_t uart) {
int index = (uart - 1) * 2;
if (CTS.muxRegister != 0) {
IOMUXC_SetPinMux(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister, 0U);
IOMUXC_SetPinConfig(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, CTS.configRegister));
return true;
} else {
return false;
}
}
void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData) {
machine_uart_obj_t *self = userData;
if (kStatus_LPUART_TxIdle == status) {
self->tx_status = kStatus_LPUART_TxIdle;
}
if (kStatus_LPUART_RxRingBufferOverrun == status) {
; // Ringbuffer full, deassert RTS if flow control is enabled
}
}
static void machine_uart_ensure_active(machine_uart_obj_t *uart) {
if (uart->lpuart->CTRL == 0) {
mp_raise_OSError(EIO);
}
}
void machine_uart_set_baudrate(mp_obj_t uart_in, uint32_t baudrate) {
machine_uart_obj_t *uart = MP_OBJ_TO_PTR(uart_in);
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
}
/******************************************************************************/
// MicroPython bindings for UART
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INVERT_TX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INVERT_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, \
STATIC void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, flow=%s, "
"rxbuf=%d, txbuf=%d, timeout=%u, timeout_char=%u, invert=%s)",
self->id, self->config.baudRate_Bps, 8 - self->config.dataBitsCount,
_parity_name[self->config.parityMode], self->config.stopBitCount + 1,
_flow_name[(self->config.enableTxCTS << 1) | self->config.enableRxRTS],
self->handle.rxRingBufferSize, self->txbuf_len, self->timeout, self->timeout_char,
_invert_name[self->invert]);
}
STATIC void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_flow,
ARG_timeout, ARG_timeout_char, ARG_invert, ARG_rxbuf, ARG_txbuf};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->config.baudRate_Bps = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->config.dataBitsCount = 8 - args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->config.parityMode = kLPUART_ParityDisabled;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->config.parityMode = kLPUART_ParityOdd;
} else {
self->config.parityMode = kLPUART_ParityEven;
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->config.stopBitCount = args[ARG_stop].u_int - 1;
}
// Set flow if configured.
if (args[ARG_flow].u_int >= 0) {
if (args[ARG_flow].u_int & ~UART_HWCONTROL_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad flow mask"));
}
if (args[ARG_flow].u_int & UART_HWCONTROL_RTS) {
if (!lpuart_set_iomux_rts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("rts not available"));
}
self->config.enableRxRTS = true;
}
if (args[ARG_flow].u_int & UART_HWCONTROL_CTS) {
if (!lpuart_set_iomux_cts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("cts not available"));
}
self->config.enableTxCTS = true;
}
}
// Set timeout if configured.
if (args[ARG_timeout].u_int >= 0) {
self->timeout = args[ARG_timeout].u_int;
}
// Set timeout_char if configured.
if (args[ARG_timeout_char].u_int >= 0) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// Set line inversion if configured.
if (args[ARG_invert].u_int >= 0) {
if (args[ARG_invert].u_int & ~UART_INVERT_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
self->tx_status = kStatus_LPUART_TxIdle;
self->config.enableTx = true;
self->config.enableRx = true;
// Set the RX buffer size if configured.
size_t rxbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_rxbuf].u_int > 0) {
rxbuf_len = args[ARG_rxbuf].u_int;
if (rxbuf_len < MIN_BUFFER_SIZE) {
rxbuf_len = MIN_BUFFER_SIZE;
} else if (rxbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large"));
}
}
// Set the TX buffer size if configured.
size_t txbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_txbuf].u_int > 0) {
txbuf_len = args[ARG_txbuf].u_int;
if (txbuf_len < MIN_BUFFER_SIZE) {
txbuf_len = MIN_BUFFER_SIZE;
} else if (txbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large"));
}
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// may be obsolete
if (self->config.baudRate_Bps == 0) {
self->config.baudRate_Bps = DEFAULT_UART_BAUDRATE;
}
// Make sure timeout_char is at least as long as a whole character (13 bits to be safe).
uint32_t min_timeout_char = 13000 / self->config.baudRate_Bps + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_Init(self->lpuart, &self->config, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_Init(self->lpuart, &self->config, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
LPUART_TransferCreateHandle(self->lpuart, &self->handle, LPUART_UserCallback, self);
uint8_t *buffer = m_new(uint8_t, rxbuf_len + 1);
LPUART_TransferStartRingBuffer(self->lpuart, &self->handle, buffer, rxbuf_len);
self->txbuf = m_new(uint8_t, txbuf_len); // Allocate the TX buffer.
self->txbuf_len = txbuf_len;
// The Uart supports inverting, but not the fsl API, so it has to coded directly
// And it has to be done after LPUART_Init.
if (self->invert & UART_INVERT_RX) {
LPUART_EnableRx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_RXINV_SHIFT;
LPUART_EnableRx(self->lpuart, true);
}
if (self->invert & UART_INVERT_TX) {
LPUART_EnableTx(self->lpuart, false);
self->lpuart->CTRL |= 1 << LPUART_CTRL_TXINV_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
// Send long break; drop that code for a shorter break duration
LPUART_EnableTx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_BRK13_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
}
STATIC mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get UART bus.
int uart_id = mp_obj_get_int(args[0]);
if (uart_id < 0 || uart_id > MICROPY_HW_UART_NUM || uart_index_table[uart_id] == 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Create the UART object and fill it with defaults.
uint8_t uart_hw_id = uart_index_table[uart_id]; // the hw uart number 1..n
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->id = uart_id;
self->lpuart = uart_base_ptr_table[uart_hw_id];
self->invert = false;
self->timeout = 1;
self->timeout_char = 1;
self->new = true;
LPUART_GetDefaultConfig(&self->config);
// Configure board-specific pin MUX based on the hardware device number.
bool uart_present = lpuart_set_iomux(uart_hw_id);
if (uart_present) {
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
} else {
return mp_const_none;
}
}
// uart.deinit()
STATIC void mp_machine_uart_deinit(machine_uart_obj_t *self) {
LPUART_SoftwareReset(self->lpuart);
}
STATIC mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
size_t count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
return count;
}
STATIC bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return self->tx_status == kStatus_LPUART_TxIdle;
}
STATIC void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
self->lpuart->CTRL |= 1 << LPUART_CTRL_SBK_SHIFT; // Set SBK bit
self->lpuart->CTRL &= ~LPUART_CTRL_SBK_MASK; // Clear SBK bit
}
// Reset all defined UARTs
void machine_uart_deinit_all(void) {
for (int i = 0; i < MICROPY_HW_UART_NUM; i++) {
if (uart_index_table[i] != 0) {
LPUART_SoftwareReset(uart_base_ptr_table[uart_index_table[i]]);
}
}
}
STATIC mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint64_t t = ticks_us64() + (uint64_t)self->timeout * 1000;
uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000;
lpuart_transfer_t xfer;
uint8_t *dest = buf_in;
size_t avail;
size_t nget;
machine_uart_ensure_active(self);
for (size_t received = 0; received < size;) {
// Wait for the first/next character.
while ((avail = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle)) <= 0) {
if (ticks_us64() > t) { // timed out
if (received <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return received;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get as many bytes as possible to meet the need.
nget = avail < (size - received) ? avail : size - received;
xfer.data = dest + received;
xfer.dataSize = nget;
LPUART_TransferReceiveNonBlocking(self->lpuart, &self->handle, &xfer, NULL);
received += nget;
t = ticks_us64() + timeout_char_us;
}
return size;
}
STATIC mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
lpuart_transfer_t xfer;
uint64_t t;
size_t remaining = size;
size_t offset = 0;
uint8_t fifo_size = FSL_FEATURE_LPUART_FIFO_SIZEn(0);
machine_uart_ensure_active(self);
// First check if a previous transfer is still ongoing,
// then wait at least the number of remaining character times.
t = ticks_us64() + (uint64_t)(self->handle.txDataSize + fifo_size) * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
if (ticks_us64() > t) { // timed out, hard error
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
MICROPY_EVENT_POLL_HOOK
}
// Check if the first part has to be sent semi-blocking.
if (size > self->txbuf_len) {
// Send the first block.
xfer.data = (uint8_t *)buf_in;
offset = xfer.dataSize = size - self->txbuf_len;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
// Wait at least the number of character times for this chunk.
t = ticks_us64() + (uint64_t)xfer.dataSize * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
// Wait for the first/next character to be sent.
if (ticks_us64() > t) { // timed out
if (self->handle.txDataSize >= size) {
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
} else {
return size - self->handle.txDataSize;
}
}
MICROPY_EVENT_POLL_HOOK
}
remaining = self->txbuf_len;
} else {
// The data fits into the tx buffer.
offset = 0;
remaining = size;
}
// Send the remaining data without waiting for completion.
memcpy(self->txbuf, (uint8_t *)buf_in + offset, remaining);
xfer.data = self->txbuf;
xfer.dataSize = remaining;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
return size;
}
STATIC mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
machine_uart_ensure_active(self);
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
uint32_t count;
count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
if (count > 0) {
ret |= MP_STREAM_POLL_RD;
}
}
if ((flags & MP_STREAM_POLL_WR) && (self->tx_status == kStatus_LPUART_TxIdle)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint64_t timeout = (uint64_t)(3 + self->txbuf_len) * 13000000ll * 2 /
self->config.baudRate_Bps + ticks_us64();
do {
if (mp_machine_uart_txdone(self)) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (ticks_us64() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}