micropython/stmhal/modcc3k.c

658 lines
22 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// We can't include stdio.h because it defines _types_fd_set, but we
// need to use the CC3000 version of this type.
#include <std.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>
// CC3000 defines its own ENOBUFS (different to standard one!)
#undef ENOBUFS
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objlist.h"
#include "stream.h"
#include "runtime.h"
#include "modnetwork.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "spi.h"
#include "pybioctl.h"
#include "hci.h"
#include "socket.h"
#include "inet_ntop.h"
#include "inet_pton.h"
#include "ccspi.h"
#include "wlan.h"
#include "nvmem.h"
#include "netapp.h"
#include "patch_prog.h"
/// \moduleref network
int CC3000_EXPORT(errno); // for cc3000 driver
STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol, int *_errno);
STATIC volatile uint32_t fd_closed_state = 0;
STATIC volatile bool wlan_connected = false;
STATIC volatile bool ip_obtained = false;
STATIC int cc3k_get_fd_closed_state(int fd) {
return fd_closed_state & (1 << fd);
}
STATIC void cc3k_set_fd_closed_state(int fd) {
fd_closed_state |= 1 << fd;
}
STATIC void cc3k_reset_fd_closed_state(int fd) {
fd_closed_state &= ~(1 << fd);
}
STATIC void cc3k_callback(long event_type, char *data, unsigned char length) {
switch (event_type) {
case HCI_EVNT_WLAN_UNSOL_CONNECT:
wlan_connected = true;
break;
case HCI_EVNT_WLAN_UNSOL_DISCONNECT:
// link down
wlan_connected = false;
ip_obtained = false;
break;
case HCI_EVNT_WLAN_UNSOL_DHCP:
ip_obtained = true;
break;
case HCI_EVNT_BSD_TCP_CLOSE_WAIT:
// mark socket for closure
cc3k_set_fd_closed_state(data[0]);
break;
}
}
STATIC mp_obj_t cc3k_socket(mp_obj_t nic, int domain, int type, int fileno, int *_errno) {
switch (domain) {
case MOD_NETWORK_AF_INET: domain = AF_INET; break;
case MOD_NETWORK_AF_INET6: domain = AF_INET6; break;
default: *_errno = EAFNOSUPPORT; return MP_OBJ_NULL;
}
switch (type) {
case MOD_NETWORK_SOCK_STREAM: type = SOCK_STREAM; break;
case MOD_NETWORK_SOCK_DGRAM: type = SOCK_DGRAM; break;
case MOD_NETWORK_SOCK_RAW: type = SOCK_RAW; break;
default: *_errno = EINVAL; return MP_OBJ_NULL;
}
return cc3k_socket_new(domain, type, 0, _errno);
}
STATIC int cc3k_gethostbyname(mp_obj_t nic, const char *name, mp_uint_t len, uint8_t *out_ip) {
uint32_t ip;
if (CC3000_EXPORT(gethostbyname)((char*)name, len, &ip) < 0) {
return CC3000_EXPORT(errno);
}
if (ip == 0) {
// unknown host
return ENOENT;
}
out_ip[0] = ip >> 24;
out_ip[1] = ip >> 16;
out_ip[2] = ip >> 8;
out_ip[3] = ip;
return 0;
}
/******************************************************************************/
// Micro Python bindings; CC3k class
/// \class CC3k - driver for CC3000 Wifi modules
typedef struct _cc3k_obj_t {
mp_obj_base_t base;
} cc3k_obj_t;
/// \classmethod \constructor(spi, pin_cs, pin_en, pin_irq)
/// Initialise the CC3000 using the given SPI bus and pins and return a CC3k object.
//
// Note: pins were originally hard-coded to:
// PYBv1.0: init(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
// [SPI on Y position; Y6=B13=SCK, Y7=B14=MISO, Y8=B15=MOSI]
//
// STM32F4DISC: init(pyb.SPI(2), pyb.Pin.cpu.A15, pyb.Pin.cpu.B10, pyb.Pin.cpu.B11)
STATIC mp_obj_t cc3k_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 4, 4, false);
// set the pins to use
SpiInit(
spi_get_handle(args[0]),
pin_find(args[1]),
pin_find(args[2]),
pin_find(args[3])
);
// initialize and start the module
wlan_init(cc3k_callback, NULL, NULL, NULL,
ReadWlanInterruptPin, SpiResumeSpi, SpiPauseSpi, WriteWlanPin);
if (wlan_start(0) != 0) {
nlr_raise(mp_obj_new_exception_msg(
&mp_type_OSError, "Failed to init wlan module"));
}
// set connection policy. this should be called explicitly by the user
// wlan_ioctl_set_connection_policy(0, 0, 0);
// Mask out all non-required events from the CC3000
wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|
HCI_EVNT_WLAN_UNSOL_INIT|
HCI_EVNT_WLAN_ASYNC_PING_REPORT|
HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE);
cc3k_obj_t *cc3k = m_new_obj(cc3k_obj_t);
cc3k->base.type = (mp_obj_type_t*)&mod_network_nic_type_cc3k;
// register with network module
mod_network_register_nic(cc3k);
return cc3k;
}
/// \method connect(ssid, key=None, *, security=WPA2, bssid=None)
STATIC mp_obj_t cc3k_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_key, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = WLAN_SEC_WPA2} },
{ MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get ssid
mp_uint_t ssid_len;
const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len);
// get key and sec
mp_uint_t key_len = 0;
const char *key = NULL;
mp_uint_t sec = WLAN_SEC_UNSEC;
if (args[1].u_obj != mp_const_none) {
key = mp_obj_str_get_data(args[1].u_obj, &key_len);
sec = args[2].u_int;
}
// get bssid
const char *bssid = NULL;
if (args[3].u_obj != mp_const_none) {
bssid = mp_obj_str_get_str(args[3].u_obj);
}
// connect to AP
if (wlan_connect(sec, (char*)ssid, ssid_len, (uint8_t*)bssid, (uint8_t*)key, key_len) != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "could not connect to ssid=%s, sec=%d, key=%s\n", ssid, sec, key));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_connect_obj, 1, cc3k_connect);
STATIC mp_obj_t cc3k_disconnect(mp_obj_t self_in) {
int ret = wlan_disconnect();
return mp_obj_new_int(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_disconnect_obj, cc3k_disconnect);
STATIC mp_obj_t cc3k_is_connected(mp_obj_t self_in) {
if (wlan_connected && ip_obtained) {
return mp_const_true;
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_is_connected_obj, cc3k_is_connected);
STATIC mp_obj_t cc3k_ifconfig(mp_obj_t self_in) {
tNetappIpconfigRetArgs ipconfig={{0}};
uint8_t *ip = &ipconfig.aucIP[0];
uint8_t *mask= &ipconfig.aucSubnetMask[0];
uint8_t *gw= &ipconfig.aucDefaultGateway[0];
uint8_t *dhcp= &ipconfig.aucDHCPServer[0];
uint8_t *dns= &ipconfig.aucDNSServer[0];
uint8_t *mac= &ipconfig.uaMacAddr[0];
uint8_t *ssid= &ipconfig.uaSSID[0];
netapp_ipconfig(&ipconfig);
printf ("IP:%d.%d.%d.%d\n" \
"Mask:%d.%d.%d.%d\n"\
"GW:%d.%d.%d.%d\n" \
"DHCP:%d.%d.%d.%d\n"\
"DNS:%d.%d.%d.%d\n" \
"MAC:%02X:%02X:%02X:%02X:%02X:%02X\n"\
"SSID: %s\n",
ip[3], ip[2], ip[1], ip[0],
mask[3], mask[2], mask[1], mask[0],
gw[3], gw[2], gw[1], gw[0],
dhcp[3], dhcp[2], dhcp[1], dhcp[0],
dns[3], dns[2], dns[1], dns[0],
mac[5], mac[4], mac[3], mac[2], mac[1], mac[0], ssid);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_ifconfig_obj, cc3k_ifconfig);
STATIC mp_obj_t cc3k_patch_version(mp_obj_t self_in) {
uint8_t pver[2];
mp_obj_tuple_t *t_pver;
nvmem_read_sp_version(pver);
t_pver = mp_obj_new_tuple(2, NULL);
t_pver->items[0] = mp_obj_new_int(pver[0]);
t_pver->items[1] = mp_obj_new_int(pver[1]);
return t_pver;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_version_obj, cc3k_patch_version);
STATIC mp_obj_t cc3k_patch_program(mp_obj_t self_in, mp_obj_t key_in) {
const char *key = mp_obj_str_get_str(key_in);
if (key[0] == 'p' && key[1] == 'g' && key[2] == 'm' && key[3] == '\0') {
patch_prog_start();
} else {
printf("please pass 'pgm' as argument in order to program\n");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_patch_program_obj, cc3k_patch_program);
STATIC const mp_map_elem_t cc3k_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&cc3k_disconnect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_is_connected), (mp_obj_t)&cc3k_is_connected_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&cc3k_ifconfig_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_version), (mp_obj_t)&cc3k_patch_version_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_patch_program), (mp_obj_t)&cc3k_patch_program_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WEP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WPA2), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA2) },
};
STATIC MP_DEFINE_CONST_DICT(cc3k_locals_dict, cc3k_locals_dict_table);
const mod_network_nic_type_t mod_network_nic_type_cc3k = {
.base = {
{ &mp_type_type },
.name = MP_QSTR_CC3k,
//.print = cc3k_print,
.make_new = cc3k_make_new,
.locals_dict = (mp_obj_t)&cc3k_locals_dict,
},
.socket = cc3k_socket,
.gethostbyname = cc3k_gethostbyname,
};
/******************************************************************************/
// Micro Python bindings; CC3k socket class
#define MAX_ADDRSTRLEN (128)
#define MAX_RX_PACKET (CC3000_RX_BUFFER_SIZE-CC3000_MINIMAL_RX_SIZE-1)
#define MAX_TX_PACKET (CC3000_TX_BUFFER_SIZE-CC3000_MINIMAL_TX_SIZE-1)
typedef struct _cc3k_socket_obj_t {
mp_obj_base_t base;
int fd;
} cc3k_socket_obj_t;
STATIC const mp_obj_type_t cc3k_socket_type;
STATIC mp_obj_t cc3k_socket_new(mp_uint_t family, mp_uint_t type, mp_uint_t protocol, int *_errno) {
// create socket object
cc3k_socket_obj_t *s = m_new_obj_with_finaliser(cc3k_socket_obj_t);
s->base.type = (mp_obj_t)&cc3k_socket_type;
// open socket
s->fd = CC3000_EXPORT(socket)(family, type, protocol);
if (s->fd < 0) {
m_del_obj(cc3k_socket_obj_t, s);
*_errno = CC3000_EXPORT(errno);
return MP_OBJ_NULL;
}
// clear socket state
cc3k_reset_fd_closed_state(s->fd);
return s;
}
STATIC void cc3k_socket_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
cc3k_socket_obj_t *self = self_in;
printf("<CC3k.socket fd=%d>", self->fd);
}
STATIC mp_obj_t cc3k_socket_send(mp_obj_t self_in, mp_obj_t buf_in) {
cc3k_socket_obj_t *self = self_in;
if (cc3k_get_fd_closed_state(self->fd)) {
CC3000_EXPORT(closesocket)(self->fd);
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(EPIPE)));
}
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
// CC3K does not handle fragmentation, and will overflow,
// split the packet into smaller ones and send them out.
mp_int_t bytes = 0;
while (bytes < bufinfo.len) {
int n = MIN((bufinfo.len - bytes), MAX_TX_PACKET);
n = CC3000_EXPORT(send)(self->fd, (uint8_t*)bufinfo.buf + bytes, n, 0);
if (n <= 0) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(CC3000_EXPORT(errno))));
}
bytes += n;
}
return MP_OBJ_NEW_SMALL_INT(bytes);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_send_obj, cc3k_socket_send);
STATIC mp_obj_t cc3k_socket_recv(mp_obj_t self_in, mp_obj_t len_in) {
cc3k_socket_obj_t *self = self_in;
if (cc3k_get_fd_closed_state(self->fd)) {
CC3000_EXPORT(closesocket)(self->fd);
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(EPIPE)));
}
// recv upto MAX_RX_PACKET
mp_int_t len = mp_obj_get_int(len_in);
len = MIN(len, MAX_RX_PACKET);
byte *buf;
mp_obj_t ret_obj = mp_obj_str_builder_start(&mp_type_bytes, len, &buf);
len = CC3000_EXPORT(recv)(self->fd, buf, len, 0);
if (len == 0) {
return mp_const_empty_bytes;
} else if (len < 0) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(CC3000_EXPORT(errno))));
} else {
return mp_obj_str_builder_end_with_len(ret_obj, len);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_recv_obj, cc3k_socket_recv);
STATIC mp_obj_t cc3k_socket_bind(mp_obj_t self_in, mp_obj_t addr_obj) {
cc3k_socket_obj_t *self = self_in;
mp_obj_t *addr;
mp_obj_get_array_fixed_n(addr_obj, 2, &addr);
// fill sockaddr struct
int port = mp_obj_get_int(addr[1]);
sockaddr_in addr_in = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr.s_addr = 0,// INADDR_ANY
.sin_zero = {0}
};
const char *host = mp_obj_str_get_str(addr[0]);
if (strlen(host) && !inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
// bind socket
if (CC3000_EXPORT(bind)(self->fd, (sockaddr*) &addr_in, sizeof(sockaddr_in)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "bind failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_bind_obj, cc3k_socket_bind);
STATIC mp_obj_t cc3k_socket_listen(mp_obj_t self_in, mp_obj_t backlog) {
cc3k_socket_obj_t *self = self_in;
if (CC3000_EXPORT(listen)(self->fd, mp_obj_get_int(backlog)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "listen failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_listen_obj, cc3k_socket_listen);
STATIC mp_obj_t cc3k_socket_accept(mp_obj_t self_in) {
cc3k_socket_obj_t *self = self_in;
int fd;
sockaddr addr;
socklen_t addr_len = sizeof(sockaddr);
// accept incoming connection
if ((fd = CC3000_EXPORT(accept)(self->fd, &addr, &addr_len)) < 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "accept failed"));
}
// clear socket state
cc3k_reset_fd_closed_state(fd);
// create new socket object
cc3k_socket_obj_t *socket_obj = m_new_obj_with_finaliser(cc3k_socket_obj_t);
socket_obj->base.type = (mp_obj_t)&cc3k_socket_type;
socket_obj->fd = fd;
char buf[MAX_ADDRSTRLEN]={0};
if (inet_ntop(addr.sa_family,
&(((sockaddr_in*)&addr)->sin_addr), buf, MAX_ADDRSTRLEN) == NULL) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
mp_obj_tuple_t *cli = mp_obj_new_tuple(2, NULL);
mp_obj_tuple_t *cli_addr = mp_obj_new_tuple(2, NULL);
cli->items[0] = socket_obj;
cli->items[1] = cli_addr;
cli_addr->items[0] = mp_obj_new_str(buf, strlen(buf), false);
cli_addr->items[1] = mp_obj_new_int(((sockaddr_in*)&addr)->sin_port);
return cli;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_accept_obj, cc3k_socket_accept);
STATIC mp_obj_t cc3k_socket_connect(mp_obj_t self_in, mp_obj_t addr_obj) {
cc3k_socket_obj_t *self = self_in;
mp_obj_t *addr;
mp_obj_get_array_fixed_n(addr_obj, 2, &addr);
// fill sockaddr struct
int port = mp_obj_get_int(addr[1]);
sockaddr_in addr_in = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr.s_addr = 0, // to be filled below using inet_pton
.sin_zero = {0}
};
const char *host = mp_obj_str_get_str(addr[0]);
if (!inet_pton(AF_INET, host, &addr_in.sin_addr.s_addr)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "invalid IP address"));
}
//printf("doing connect: fd=%d, sockaddr=(%d, %d, %lu)\n", self->fd, addr_in.sin_family, addr_in.sin_port, addr_in.sin_addr.s_addr);
int ret = CC3000_EXPORT(connect)(self->fd, (sockaddr*)&addr_in, sizeof(sockaddr_in));
if (ret != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "[Errno %d] connect failed", ret));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_connect_obj, cc3k_socket_connect);
STATIC mp_obj_t cc3k_socket_settimeout(mp_obj_t self_in, mp_obj_t timeout) {
cc3k_socket_obj_t *self = self_in;
int optval = mp_obj_get_int(timeout);
socklen_t optlen = sizeof(optval);
if (CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_RECV_TIMEOUT, &optval, optlen) != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_settimeout_obj, cc3k_socket_settimeout);
STATIC mp_obj_t cc3k_socket_setblocking(mp_obj_t self_in, mp_obj_t blocking) {
cc3k_socket_obj_t *self = self_in;
int optval;
socklen_t optlen = sizeof(optval);
if (mp_obj_get_int(blocking)) {
optval = SOCK_OFF; // Enable non-blocking
} else {
optval = SOCK_ON;
}
if (CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_RECV_NONBLOCK, &optval, optlen) != 0 ||
CC3000_EXPORT(setsockopt)(self->fd, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen) != 0 ) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "setsockopt failed"));
}
return mp_const_true;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_socket_setblocking_obj, cc3k_socket_setblocking);
STATIC mp_obj_t cc3k_socket_close(mp_obj_t self_in) {
cc3k_socket_obj_t *self = self_in;
CC3000_EXPORT(closesocket)(self->fd);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_socket_close_obj, cc3k_socket_close);
STATIC const mp_map_elem_t cc3k_socket_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&cc3k_socket_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&cc3k_socket_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bind), (mp_obj_t)&cc3k_socket_bind_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_listen), (mp_obj_t)&cc3k_socket_listen_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_accept), (mp_obj_t)&cc3k_socket_accept_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_socket_connect_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_settimeout), (mp_obj_t)&cc3k_socket_settimeout_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_setblocking), (mp_obj_t)&cc3k_socket_setblocking_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&cc3k_socket_close_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&cc3k_socket_close_obj },
};
STATIC MP_DEFINE_CONST_DICT(cc3k_socket_locals_dict, cc3k_socket_locals_dict_table);
mp_uint_t cc3k_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
cc3k_socket_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_IOCTL_POLL) {
mp_uint_t flags = arg;
ret = 0;
int fd = self->fd;
// init fds
fd_set rfds, wfds, xfds;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
// set fds if needed
if (flags & MP_IOCTL_POLL_RD) {
FD_SET(fd, &rfds);
// A socked that just closed is available for reading. A call to
// recv() returns 0 which is consistent with BSD.
if (cc3k_get_fd_closed_state(fd)) {
ret |= MP_IOCTL_POLL_RD;
}
}
if (flags & MP_IOCTL_POLL_WR) {
FD_SET(fd, &wfds);
}
if (flags & MP_IOCTL_POLL_HUP) {
FD_SET(fd, &xfds);
}
// call cc3000 select with minimum timeout
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 1;
int nfds = CC3000_EXPORT(select)(fd + 1, &rfds, &wfds, &xfds, &tv);
// check for error
if (nfds == -1) {
*errcode = CC3000_EXPORT(errno);
return -1;
}
// check return of select
if (FD_ISSET(fd, &rfds)) {
ret |= MP_IOCTL_POLL_RD;
}
if (FD_ISSET(fd, &wfds)) {
ret |= MP_IOCTL_POLL_WR;
}
if (FD_ISSET(fd, &xfds)) {
ret |= MP_IOCTL_POLL_HUP;
}
} else {
*errcode = EINVAL;
ret = -1;
}
return ret;
}
STATIC const mp_stream_p_t cc3k_socket_stream_p = {
.ioctl = cc3k_ioctl,
.is_text = false,
};
STATIC const mp_obj_type_t cc3k_socket_type = {
{ &mp_type_type },
.name = MP_QSTR_socket,
.print = cc3k_socket_print,
.stream_p = &cc3k_socket_stream_p,
.locals_dict = (mp_obj_t)&cc3k_socket_locals_dict,
};