micropython/ports/rp2/machine_pwm.c

198 lines
7.7 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "modmachine.h"
#include "hardware/clocks.h"
#include "hardware/pwm.h"
/******************************************************************************/
// MicroPython bindings for machine.PWM
const mp_obj_type_t machine_pwm_type;
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
uint8_t slice;
uint8_t channel;
} machine_pwm_obj_t;
STATIC machine_pwm_obj_t machine_pwm_obj[] = {
{{&machine_pwm_type}, 0, PWM_CHAN_A},
{{&machine_pwm_type}, 0, PWM_CHAN_B},
{{&machine_pwm_type}, 1, PWM_CHAN_A},
{{&machine_pwm_type}, 1, PWM_CHAN_B},
{{&machine_pwm_type}, 2, PWM_CHAN_A},
{{&machine_pwm_type}, 2, PWM_CHAN_B},
{{&machine_pwm_type}, 3, PWM_CHAN_A},
{{&machine_pwm_type}, 3, PWM_CHAN_B},
{{&machine_pwm_type}, 4, PWM_CHAN_A},
{{&machine_pwm_type}, 4, PWM_CHAN_B},
{{&machine_pwm_type}, 5, PWM_CHAN_A},
{{&machine_pwm_type}, 5, PWM_CHAN_B},
{{&machine_pwm_type}, 6, PWM_CHAN_A},
{{&machine_pwm_type}, 6, PWM_CHAN_B},
{{&machine_pwm_type}, 7, PWM_CHAN_A},
{{&machine_pwm_type}, 7, PWM_CHAN_B},
};
STATIC void machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<PWM slice=%u channel=%u>", self->slice, self->channel);
}
// PWM(pin)
STATIC mp_obj_t machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// Get GPIO to connect to PWM.
uint32_t gpio = mp_hal_get_pin_obj(all_args[0]);
// Get static peripheral object.
uint slice = pwm_gpio_to_slice_num(gpio);
uint8_t channel = pwm_gpio_to_channel(gpio);
const machine_pwm_obj_t *self = &machine_pwm_obj[slice * 2 + channel];
// Select PWM function for given GPIO.
gpio_set_function(gpio, GPIO_FUNC_PWM);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_pwm_deinit(mp_obj_t self_in) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
pwm_set_enabled(self->slice, false);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_pwm_deinit_obj, machine_pwm_deinit);
// PWM.freq([value])
STATIC mp_obj_t machine_pwm_freq(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t source_hz = clock_get_hz(clk_sys);
if (n_args == 1) {
// Get frequency.
uint32_t div16 = pwm_hw->slice[self->slice].div;
uint32_t top = pwm_hw->slice[self->slice].top;
uint32_t pwm_freq = 16 * source_hz / div16 / top;
return MP_OBJ_NEW_SMALL_INT(pwm_freq);
} else {
// Set the frequency, making "top" as large as possible for maximum resolution.
// Maximum "top" is set at 65534 to be able to achieve 100% duty with 65535.
#define TOP_MAX 65534
mp_int_t freq = mp_obj_get_int(args[1]);
uint32_t div16_top = 16 * source_hz / freq;
uint32_t top = 1;
for (;;) {
// Try a few small prime factors to get close to the desired frequency.
if (div16_top >= 16 * 5 && div16_top % 5 == 0 && top * 5 <= TOP_MAX) {
div16_top /= 5;
top *= 5;
} else if (div16_top >= 16 * 3 && div16_top % 3 == 0 && top * 3 <= TOP_MAX) {
div16_top /= 3;
top *= 3;
} else if (div16_top >= 16 * 2 && top * 2 <= TOP_MAX) {
div16_top /= 2;
top *= 2;
} else {
break;
}
}
if (div16_top < 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too large"));
} else if (div16_top >= 256 * 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too small"));
}
pwm_hw->slice[self->slice].div = div16_top;
pwm_hw->slice[self->slice].top = top;
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_freq_obj, 1, 2, machine_pwm_freq);
// PWM.duty_u16([value])
STATIC mp_obj_t machine_pwm_duty_u16(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t top = pwm_hw->slice[self->slice].top;
if (n_args == 1) {
// Get duty cycle.
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
return MP_OBJ_NEW_SMALL_INT(cc * 65535 / (top + 1));
} else {
// Set duty cycle.
mp_int_t duty_u16 = mp_obj_get_int(args[1]);
uint32_t cc = duty_u16 * (top + 1) / 65535;
pwm_set_chan_level(self->slice, self->channel, cc);
pwm_set_enabled(self->slice, true);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_duty_u16_obj, 1, 2, machine_pwm_duty_u16);
// PWM.duty_ns([value])
STATIC mp_obj_t machine_pwm_duty_ns(size_t n_args, const mp_obj_t *args) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t source_hz = clock_get_hz(clk_sys);
uint32_t slice_hz = 16 * source_hz / pwm_hw->slice[self->slice].div;
if (n_args == 1) {
// Get duty cycle.
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
return MP_OBJ_NEW_SMALL_INT((uint64_t)cc * 1000000000ULL / slice_hz);
} else {
// Set duty cycle.
mp_int_t duty_ns = mp_obj_get_int(args[1]);
uint32_t cc = (uint64_t)duty_ns * slice_hz / 1000000000ULL;
if (cc > 65535) {
mp_raise_ValueError(MP_ERROR_TEXT("duty larger than period"));
}
pwm_set_chan_level(self->slice, self->channel, cc);
pwm_set_enabled(self->slice, true);
return mp_const_none;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_pwm_duty_ns_obj, 1, 2, machine_pwm_duty_ns);
STATIC const mp_rom_map_elem_t machine_pwm_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_pwm_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_pwm_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty_u16), MP_ROM_PTR(&machine_pwm_duty_u16_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty_ns), MP_ROM_PTR(&machine_pwm_duty_ns_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_pwm_locals_dict, machine_pwm_locals_dict_table);
const mp_obj_type_t machine_pwm_type = {
{ &mp_type_type },
.name = MP_QSTR_PWM,
.print = machine_pwm_print,
.make_new = machine_pwm_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_pwm_locals_dict,
};