micropython/cc3200/mods/pybrtc.c

224 lines
7.7 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/runtime.h"
#include "modutime.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "rom_map.h"
#include "prcm.h"
#include "pybrtc.h"
#include "pybsleep.h"
#include "mpcallback.h"
/// \moduleref pyb
/// \class RTC - real time clock
///
/// The RTC is and independent clock that keeps track of the date
/// and time.
///
/// Example usage:
///
/// rtc = pyb.RTC()
/// rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
/// print(rtc.datetime())
/******************************************************************************
DECLARE TYPES
******************************************************************************/
typedef struct {
uint32_t alarm_sec;
uint16_t alarm_msec;
uint8_t pwrmode;
} pybrtc_data_t;
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
STATIC pybrtc_data_t pybrtc_data;
STATIC const mp_cb_methods_t pybrtc_cb_methods;
/******************************************************************************
DECLARE PUBLIC FUNCTIONS
******************************************************************************/
__attribute__ ((section (".boot")))
void pybrtc_init(void) {
// if the RTC was previously set, leave it alone
if (MAP_PRCMSysResetCauseGet() == PRCM_POWER_ON) {
// fresh reset; configure the RTC Calendar
// set the date to 1st Jan 2015
// set the time to 00:00:00
uint32_t seconds = mod_time_seconds_since_2000(2015, 1, 1, 0, 0, 0);
// Mark the RTC in use first
MAP_PRCMRTCInUseSet();
// Now set the RTC calendar seconds
MAP_PRCMRTCSet(seconds, 0);
}
}
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void pyb_rtc_callback_enable (mp_obj_t self_in) {
}
STATIC void pyb_rtc_callback_disable (mp_obj_t self_in) {
}
/******************************************************************************/
// Micro Python bindings
/// \method datetime([datetimetuple])
/// Get or set the date and time of the RTC.
///
/// With no arguments, this method returns an 8-tuple with the current
/// date and time. With 1 argument (being an 8-tuple) it sets the date
/// and time.
///
/// The 8-tuple has the following format:
///
/// (year, month, day, weekday, hours, minutes, seconds, milliseconds)
///
/// `weekday` is 1-7 for Monday through Sunday.
///
mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
mod_struct_time tm;
uint32_t seconds;
uint16_t mseconds;
if (n_args == 1) {
// get the seconds and the milliseconds from the RTC
MAP_PRCMRTCGet(&seconds, &mseconds);
mseconds = RTC_CYCLES_U16MS(mseconds);
mod_time_seconds_since_2000_to_struct_time(seconds, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_wday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(mseconds)
};
return mp_obj_new_tuple(8, tuple);
} else {
// set date and time
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
tm.tm_year = mp_obj_get_int(items[0]);
tm.tm_mon = mp_obj_get_int(items[1]);
tm.tm_mday = mp_obj_get_int(items[2]);
// Skip the weekday
tm.tm_hour = mp_obj_get_int(items[4]);
tm.tm_min = mp_obj_get_int(items[5]);
tm.tm_sec = mp_obj_get_int(items[6]);
mseconds = mp_obj_get_int(items[7]);
seconds = mod_time_seconds_since_2000(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
mseconds = RTC_U16MS_CYCLES(mseconds);
MAP_PRCMRTCSet(seconds, mseconds);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
/// \method callback(handler, intmode, value, priority, pwrmode)
/// Creates a callback object associated with the real time clock
/// min num of arguments is 1 (value). The value is the alarm time
/// in the future, in msec
STATIC mp_obj_t pyb_rtc_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mpcallback_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args);
// check if any parameters were passed
mp_obj_t _callback = mpcallback_find((mp_obj_t)&pyb_rtc_obj);
if (kw_args->used > 0 || _callback == mp_const_none) {
uint32_t seconds;
uint16_t mseconds;
// get the seconds and the milliseconds from the RTC
MAP_PRCMRTCGet(&seconds, &mseconds);
mseconds = RTC_CYCLES_U16MS(mseconds);
// configure the rtc alarm accordingly
seconds += args[3].u_int / 1000;
mseconds += args[3].u_int - ((args[3].u_int / 1000) * 1000);
if (mseconds > 1000) {
seconds++;
mseconds -= 1000;
}
// check the wake from param
if (args[4].u_int & PYB_PWR_MODE_ACTIVE) {
MAP_PRCMRTCMatchSet(seconds, mseconds);
}
// save the alarm config for later
pybrtc_data.alarm_sec = seconds;
pybrtc_data.alarm_msec = mseconds;
pybrtc_data.pwrmode = args[4].u_int;
// create the new callback
_callback = mpcallback_new ((mp_obj_t)&pyb_rtc_obj, args[1].u_obj, &pybrtc_cb_methods);
}
return _callback;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_callback_obj, 1, pyb_rtc_callback);
STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_rtc_callback_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
STATIC const mp_obj_type_t pyb_rtc_type = {
{ &mp_type_type },
.name = MP_QSTR_RTC,
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};
STATIC const mp_cb_methods_t pybrtc_cb_methods = {
.init = pyb_rtc_callback,
.enable = pyb_rtc_callback_enable,
.disable = pyb_rtc_callback_disable,
};
const mp_obj_base_t pyb_rtc_obj = {&pyb_rtc_type};