micropython/ports/teensy/core/mk20dx128.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

663 lines
25 KiB
C
Raw Normal View History

/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "mk20dx128.h"
extern unsigned long _stext;
extern unsigned long _etext;
extern unsigned long _sdata;
extern unsigned long _edata;
extern unsigned long _sbss;
extern unsigned long _ebss;
extern unsigned long _estack;
//extern void __init_array_start(void);
//extern void __init_array_end(void);
extern int main (void);
void ResetHandler(void);
void _init_Teensyduino_internal_(void);
void __libc_init_array(void);
void fault_isr(void)
{
while (1) {
// keep polling some communication while in fault
// mode, so we don't completely die.
if (SIM_SCGC4 & SIM_SCGC4_USBOTG) usb_isr();
if (SIM_SCGC4 & SIM_SCGC4_UART0) uart0_status_isr();
if (SIM_SCGC4 & SIM_SCGC4_UART1) uart1_status_isr();
if (SIM_SCGC4 & SIM_SCGC4_UART2) uart2_status_isr();
}
}
void unused_isr(void)
{
fault_isr();
}
extern volatile uint32_t systick_millis_count;
void systick_default_isr(void)
{
systick_millis_count++;
}
void nmi_isr(void) __attribute__ ((weak, alias("unused_isr")));
void hard_fault_isr(void) __attribute__ ((weak, alias("unused_isr")));
void memmanage_fault_isr(void) __attribute__ ((weak, alias("unused_isr")));
void bus_fault_isr(void) __attribute__ ((weak, alias("unused_isr")));
void usage_fault_isr(void) __attribute__ ((weak, alias("unused_isr")));
void svcall_isr(void) __attribute__ ((weak, alias("unused_isr")));
void debugmonitor_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pendablesrvreq_isr(void) __attribute__ ((weak, alias("unused_isr")));
void systick_isr(void) __attribute__ ((weak, alias("systick_default_isr")));
void dma_ch0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch3_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch4_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch5_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch6_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch7_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch8_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch9_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch10_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch11_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch12_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch13_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch14_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_ch15_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dma_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void mcm_isr(void) __attribute__ ((weak, alias("unused_isr")));
void flash_cmd_isr(void) __attribute__ ((weak, alias("unused_isr")));
void flash_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void low_voltage_isr(void) __attribute__ ((weak, alias("unused_isr")));
void wakeup_isr(void) __attribute__ ((weak, alias("unused_isr")));
void watchdog_isr(void) __attribute__ ((weak, alias("unused_isr")));
void i2c0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void i2c1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void i2c2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void spi0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void spi1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void spi2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void sdhc_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_message_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_bus_off_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_tx_warn_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_rx_warn_isr(void) __attribute__ ((weak, alias("unused_isr")));
void can0_wakeup_isr(void) __attribute__ ((weak, alias("unused_isr")));
void i2s0_tx_isr(void) __attribute__ ((weak, alias("unused_isr")));
void i2s0_rx_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart0_lon_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart0_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart0_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart1_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart1_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart2_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart2_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart3_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart3_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart4_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart4_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart5_status_isr(void) __attribute__ ((weak, alias("unused_isr")));
void uart5_error_isr(void) __attribute__ ((weak, alias("unused_isr")));
void adc0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void adc1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void cmp0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void cmp1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void cmp2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void ftm0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void ftm1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void ftm2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void ftm3_isr(void) __attribute__ ((weak, alias("unused_isr")));
void cmt_isr(void) __attribute__ ((weak, alias("unused_isr")));
void rtc_alarm_isr(void) __attribute__ ((weak, alias("unused_isr")));
void rtc_seconds_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pit0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pit1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pit2_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pit3_isr(void) __attribute__ ((weak, alias("unused_isr")));
void pdb_isr(void) __attribute__ ((weak, alias("unused_isr")));
void usb_isr(void) __attribute__ ((weak, alias("unused_isr")));
void usb_charge_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dac0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void dac1_isr(void) __attribute__ ((weak, alias("unused_isr")));
void tsi0_isr(void) __attribute__ ((weak, alias("unused_isr")));
void mcg_isr(void) __attribute__ ((weak, alias("unused_isr")));
void lptmr_isr(void) __attribute__ ((weak, alias("unused_isr")));
void porta_isr(void) __attribute__ ((weak, alias("unused_isr")));
void portb_isr(void) __attribute__ ((weak, alias("unused_isr")));
void portc_isr(void) __attribute__ ((weak, alias("unused_isr")));
void portd_isr(void) __attribute__ ((weak, alias("unused_isr")));
void porte_isr(void) __attribute__ ((weak, alias("unused_isr")));
void software_isr(void) __attribute__ ((weak, alias("unused_isr")));
// TODO: create AVR-stype ISR() macro, with default linkage to undefined handler
//
__attribute__ ((section(".vectors"), used))
void (* const gVectors[])(void) =
{
(void (*)(void))((unsigned long)&_estack), // 0 ARM: Initial Stack Pointer
ResetHandler, // 1 ARM: Initial Program Counter
nmi_isr, // 2 ARM: Non-maskable Interrupt (NMI)
hard_fault_isr, // 3 ARM: Hard Fault
memmanage_fault_isr, // 4 ARM: MemManage Fault
bus_fault_isr, // 5 ARM: Bus Fault
usage_fault_isr, // 6 ARM: Usage Fault
fault_isr, // 7 --
fault_isr, // 8 --
fault_isr, // 9 --
fault_isr, // 10 --
svcall_isr, // 11 ARM: Supervisor call (SVCall)
debugmonitor_isr, // 12 ARM: Debug Monitor
fault_isr, // 13 --
pendablesrvreq_isr, // 14 ARM: Pendable req serv(PendableSrvReq)
systick_isr, // 15 ARM: System tick timer (SysTick)
#if defined(__MK20DX128__)
dma_ch0_isr, // 16 DMA channel 0 transfer complete
dma_ch1_isr, // 17 DMA channel 1 transfer complete
dma_ch2_isr, // 18 DMA channel 2 transfer complete
dma_ch3_isr, // 19 DMA channel 3 transfer complete
dma_error_isr, // 20 DMA error interrupt channel
unused_isr, // 21 DMA --
flash_cmd_isr, // 22 Flash Memory Command complete
flash_error_isr, // 23 Flash Read collision
low_voltage_isr, // 24 Low-voltage detect/warning
wakeup_isr, // 25 Low Leakage Wakeup
watchdog_isr, // 26 Both EWM and WDOG interrupt
i2c0_isr, // 27 I2C0
spi0_isr, // 28 SPI0
i2s0_tx_isr, // 29 I2S0 Transmit
i2s0_rx_isr, // 30 I2S0 Receive
uart0_lon_isr, // 31 UART0 CEA709.1-B (LON) status
uart0_status_isr, // 32 UART0 status
uart0_error_isr, // 33 UART0 error
uart1_status_isr, // 34 UART1 status
uart1_error_isr, // 35 UART1 error
uart2_status_isr, // 36 UART2 status
uart2_error_isr, // 37 UART2 error
adc0_isr, // 38 ADC0
cmp0_isr, // 39 CMP0
cmp1_isr, // 40 CMP1
ftm0_isr, // 41 FTM0
ftm1_isr, // 42 FTM1
cmt_isr, // 43 CMT
rtc_alarm_isr, // 44 RTC Alarm interrupt
rtc_seconds_isr, // 45 RTC Seconds interrupt
pit0_isr, // 46 PIT Channel 0
pit1_isr, // 47 PIT Channel 1
pit2_isr, // 48 PIT Channel 2
pit3_isr, // 49 PIT Channel 3
pdb_isr, // 50 PDB Programmable Delay Block
usb_isr, // 51 USB OTG
usb_charge_isr, // 52 USB Charger Detect
tsi0_isr, // 53 TSI0
mcg_isr, // 54 MCG
lptmr_isr, // 55 Low Power Timer
porta_isr, // 56 Pin detect (Port A)
portb_isr, // 57 Pin detect (Port B)
portc_isr, // 58 Pin detect (Port C)
portd_isr, // 59 Pin detect (Port D)
porte_isr, // 60 Pin detect (Port E)
software_isr, // 61 Software interrupt
#elif defined(__MK20DX256__)
dma_ch0_isr, // 16 DMA channel 0 transfer complete
dma_ch1_isr, // 17 DMA channel 1 transfer complete
dma_ch2_isr, // 18 DMA channel 2 transfer complete
dma_ch3_isr, // 19 DMA channel 3 transfer complete
dma_ch4_isr, // 20 DMA channel 4 transfer complete
dma_ch5_isr, // 21 DMA channel 5 transfer complete
dma_ch6_isr, // 22 DMA channel 6 transfer complete
dma_ch7_isr, // 23 DMA channel 7 transfer complete
dma_ch8_isr, // 24 DMA channel 8 transfer complete
dma_ch9_isr, // 25 DMA channel 9 transfer complete
dma_ch10_isr, // 26 DMA channel 10 transfer complete
dma_ch11_isr, // 27 DMA channel 10 transfer complete
dma_ch12_isr, // 28 DMA channel 10 transfer complete
dma_ch13_isr, // 29 DMA channel 10 transfer complete
dma_ch14_isr, // 30 DMA channel 10 transfer complete
dma_ch15_isr, // 31 DMA channel 10 transfer complete
dma_error_isr, // 32 DMA error interrupt channel
unused_isr, // 33 --
flash_cmd_isr, // 34 Flash Memory Command complete
flash_error_isr, // 35 Flash Read collision
low_voltage_isr, // 36 Low-voltage detect/warning
wakeup_isr, // 37 Low Leakage Wakeup
watchdog_isr, // 38 Both EWM and WDOG interrupt
unused_isr, // 39 --
i2c0_isr, // 40 I2C0
i2c1_isr, // 41 I2C1
spi0_isr, // 42 SPI0
spi1_isr, // 43 SPI1
unused_isr, // 44 --
can0_message_isr, // 45 CAN OR'ed Message buffer (0-15)
can0_bus_off_isr, // 46 CAN Bus Off
can0_error_isr, // 47 CAN Error
can0_tx_warn_isr, // 48 CAN Transmit Warning
can0_rx_warn_isr, // 49 CAN Receive Warning
can0_wakeup_isr, // 50 CAN Wake Up
i2s0_tx_isr, // 51 I2S0 Transmit
i2s0_rx_isr, // 52 I2S0 Receive
unused_isr, // 53 --
unused_isr, // 54 --
unused_isr, // 55 --
unused_isr, // 56 --
unused_isr, // 57 --
unused_isr, // 58 --
unused_isr, // 59 --
uart0_lon_isr, // 60 UART0 CEA709.1-B (LON) status
uart0_status_isr, // 61 UART0 status
uart0_error_isr, // 62 UART0 error
uart1_status_isr, // 63 UART1 status
uart1_error_isr, // 64 UART1 error
uart2_status_isr, // 65 UART2 status
uart2_error_isr, // 66 UART2 error
unused_isr, // 67 --
unused_isr, // 68 --
unused_isr, // 69 --
unused_isr, // 70 --
unused_isr, // 71 --
unused_isr, // 72 --
adc0_isr, // 73 ADC0
adc1_isr, // 74 ADC1
cmp0_isr, // 75 CMP0
cmp1_isr, // 76 CMP1
cmp2_isr, // 77 CMP2
ftm0_isr, // 78 FTM0
ftm1_isr, // 79 FTM1
ftm2_isr, // 80 FTM2
cmt_isr, // 81 CMT
rtc_alarm_isr, // 82 RTC Alarm interrupt
rtc_seconds_isr, // 83 RTC Seconds interrupt
pit0_isr, // 84 PIT Channel 0
pit1_isr, // 85 PIT Channel 1
pit2_isr, // 86 PIT Channel 2
pit3_isr, // 87 PIT Channel 3
pdb_isr, // 88 PDB Programmable Delay Block
usb_isr, // 89 USB OTG
usb_charge_isr, // 90 USB Charger Detect
unused_isr, // 91 --
unused_isr, // 92 --
unused_isr, // 93 --
unused_isr, // 94 --
unused_isr, // 95 --
unused_isr, // 96 --
dac0_isr, // 97 DAC0
unused_isr, // 98 --
tsi0_isr, // 99 TSI0
mcg_isr, // 100 MCG
lptmr_isr, // 101 Low Power Timer
unused_isr, // 102 --
porta_isr, // 103 Pin detect (Port A)
portb_isr, // 104 Pin detect (Port B)
portc_isr, // 105 Pin detect (Port C)
portd_isr, // 106 Pin detect (Port D)
porte_isr, // 107 Pin detect (Port E)
unused_isr, // 108 --
unused_isr, // 109 --
software_isr, // 110 Software interrupt
#endif
};
//void usb_isr(void)
//{
//}
__attribute__ ((section(".flashconfig"), used))
const uint8_t flashconfigbytes[16] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF
};
// Automatically initialize the RTC. When the build defines the compile
// time, and the user has added a crystal, the RTC will automatically
// begin at the time of the first upload.
#ifndef TIME_T
#define TIME_T 1349049600 // default 1 Oct 2012 (never used, Arduino sets this)
#endif
extern void rtc_set(unsigned long t);
static void startup_default_early_hook(void) { WDOG_STCTRLH = WDOG_STCTRLH_ALLOWUPDATE; }
static void startup_default_late_hook(void) {}
void startup_early_hook(void) __attribute__ ((weak, alias("startup_default_early_hook")));
void startup_late_hook(void) __attribute__ ((weak, alias("startup_default_late_hook")));
__attribute__ ((section(".startup")))
void ResetHandler(void)
{
uint32_t *src = &_etext;
uint32_t *dest = &_sdata;
unsigned int i;
#if F_CPU <= 2000000
volatile int n;
#endif
WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
__asm__ volatile ("nop");
__asm__ volatile ("nop");
// programs using the watchdog timer or needing to initialize hardware as
// early as possible can implement startup_early_hook()
startup_early_hook();
// enable clocks to always-used peripherals
#if defined(__MK20DX128__)
SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
#elif defined(__MK20DX256__)
SIM_SCGC3 = SIM_SCGC3_ADC1 | SIM_SCGC3_FTM2;
SIM_SCGC5 = 0x00043F82; // clocks active to all GPIO
SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
#endif
// if the RTC oscillator isn't enabled, get it started early
if (!(RTC_CR & RTC_CR_OSCE)) {
RTC_SR = 0;
RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
}
// release I/O pins hold, if we woke up from VLLS mode
if (PMC_REGSC & PMC_REGSC_ACKISO) PMC_REGSC |= PMC_REGSC_ACKISO;
// since this is a write once register, make it visible to all F_CPU's
// so we can into other sleep modes in the future at any speed
SMC_PMPROT = SMC_PMPROT_AVLP | SMC_PMPROT_ALLS | SMC_PMPROT_AVLLS;
// TODO: do this while the PLL is waiting to lock....
while (dest < &_edata) *dest++ = *src++;
dest = &_sbss;
while (dest < &_ebss) *dest++ = 0;
SCB_VTOR = 0; // use vector table in flash
// default all interrupts to medium priority level
for (i=0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_PRIORITY(i, 128);
// hardware always starts in FEI mode
// C1[CLKS] bits are written to 00
// C1[IREFS] bit is written to 1
// C6[PLLS] bit is written to 0
// MCG_SC[FCDIV] defaults to divide by two for internal ref clock
// I tried changing MSG_SC to divide by 1, it didn't work for me
#if F_CPU <= 2000000
// use the internal oscillator
MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_IREFS;
// wait for MCGOUT to use oscillator
while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(1)) ;
for (n=0; n<10; n++) ; // TODO: why do we get 2 mA extra without this delay?
MCG_C2 = MCG_C2_IRCS;
while (!(MCG_S & MCG_S_IRCST)) ;
// now in FBI mode:
// C1[CLKS] bits are written to 01
// C1[IREFS] bit is written to 1
// C6[PLLS] is written to 0
// C2[LP] is written to 0
MCG_C2 = MCG_C2_IRCS | MCG_C2_LP;
// now in BLPI mode:
// C1[CLKS] bits are written to 01
// C1[IREFS] bit is written to 1
// C6[PLLS] bit is written to 0
// C2[LP] bit is written to 1
#else
// enable capacitors for crystal
OSC0_CR = OSC_SC8P | OSC_SC2P;
// enable osc, 8-32 MHz range, low power mode
MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS;
// switch to crystal as clock source, FLL input = 16 MHz / 512
MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(4);
// wait for crystal oscillator to begin
while ((MCG_S & MCG_S_OSCINIT0) == 0) ;
// wait for FLL to use oscillator
while ((MCG_S & MCG_S_IREFST) != 0) ;
// wait for MCGOUT to use oscillator
while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ;
// now in FBE mode
// C1[CLKS] bits are written to 10
// C1[IREFS] bit is written to 0
// C1[FRDIV] must be written to divide xtal to 31.25-39 kHz
// C6[PLLS] bit is written to 0
// C2[LP] is written to 0
#if F_CPU <= 16000000
// if the crystal is fast enough, use it directly (no FLL or PLL)
MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS | MCG_C2_LP;
// BLPE mode:
// C1[CLKS] bits are written to 10
// C1[IREFS] bit is written to 0
// C2[LP] bit is written to 1
#else
// if we need faster than the crystal, turn on the PLL
#if F_CPU == 72000000
MCG_C5 = MCG_C5_PRDIV0(5); // config PLL input for 16 MHz Crystal / 6 = 2.667 Hz
#else
MCG_C5 = MCG_C5_PRDIV0(3); // config PLL input for 16 MHz Crystal / 4 = 4 MHz
#endif
#if F_CPU == 168000000
MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(18); // config PLL for 168 MHz output
#elif F_CPU == 144000000
MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(12); // config PLL for 144 MHz output
#elif F_CPU == 120000000
MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(6); // config PLL for 120 MHz output
#elif F_CPU == 72000000
MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(3); // config PLL for 72 MHz output
#else
MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0); // config PLL for 96 MHz output
#endif
// wait for PLL to start using xtal as its input
while (!(MCG_S & MCG_S_PLLST)) ;
// wait for PLL to lock
while (!(MCG_S & MCG_S_LOCK0)) ;
// now we're in PBE mode
#endif
#endif
// now program the clock dividers
#if F_CPU == 168000000
// config divisors: 168 MHz core, 56 MHz bus, 33.6 MHz flash, USB = 168 * 2 / 7
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(4);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(6) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 144000000
// config divisors: 144 MHz core, 48 MHz bus, 28.8 MHz flash, USB = 144 / 3
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(2) | SIM_CLKDIV1_OUTDIV4(4);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2);
#elif F_CPU == 120000000
// config divisors: 120 MHz core, 60 MHz bus, 24 MHz flash, USB = 128 * 2 / 5
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(4);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(4) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 96000000
// config divisors: 96 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(3);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
#elif F_CPU == 72000000
// config divisors: 72 MHz core, 36 MHz bus, 24 MHz flash, USB = 72 * 2 / 3
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(2);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC;
#elif F_CPU == 48000000
// config divisors: 48 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(3);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
#elif F_CPU == 24000000
// config divisors: 24 MHz core, 24 MHz bus, 24 MHz flash, USB = 96 / 2
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(3);
SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1);
#elif F_CPU == 16000000
// config divisors: 16 MHz core, 16 MHz bus, 16 MHz flash
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(0);
#elif F_CPU == 8000000
// config divisors: 8 MHz core, 8 MHz bus, 8 MHz flash
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(1);
#elif F_CPU == 4000000
// config divisors: 4 MHz core, 4 MHz bus, 2 MHz flash
// since we are running from external clock 16MHz
// fix outdiv too -> cpu 16/4, bus 16/4, flash 16/4
// here we can go into vlpr?
// config divisors: 4 MHz core, 4 MHz bus, 4 MHz flash
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) | SIM_CLKDIV1_OUTDIV4(3);
#elif F_CPU == 2000000
// since we are running from the fast internal reference clock 4MHz
// but is divided down by 2 so we actually have a 2MHz, MCG_SC[FCDIV] default is 2
// fix outdiv -> cpu 2/1, bus 2/1, flash 2/2
// config divisors: 2 MHz core, 2 MHz bus, 1 MHz flash
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(1);
#else
#error "Error, F_CPU must be 168, 144, 120, 96, 72, 48, 24, 16, 8, 4, or 2 MHz"
#endif
#if F_CPU > 16000000
// switch to PLL as clock source, FLL input = 16 MHz / 512
MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4);
// wait for PLL clock to be used
while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ;
// now we're in PEE mode
// USB uses PLL clock, trace is CPU clock, CLKOUT=OSCERCLK0
SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6);
#else
SIM_SOPT2 = SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(3);
#endif
#if F_CPU <= 2000000
// since we are not going into "stop mode" i removed it
SMC_PMCTRL = SMC_PMCTRL_RUNM(2); // VLPR mode :-)
#endif
// initialize the SysTick counter
SYST_RVR = (F_CPU / 1000) - 1;
SYST_CSR = SYST_CSR_CLKSOURCE | SYST_CSR_TICKINT | SYST_CSR_ENABLE;
//init_pins();
__enable_irq();
_init_Teensyduino_internal_();
if (RTC_SR & RTC_SR_TIF) {
// TODO: this should probably set the time more agressively, if
// we could reliably detect the first reboot after programming.
rtc_set(TIME_T);
}
__libc_init_array();
startup_late_hook();
main();
while (1) ;
}
char *__brkval = (char *)&_ebss;
void * _sbrk(int incr)
{
char *prev = __brkval;
__brkval += incr;
return prev;
}
__attribute__((weak))
int _read(int file, char *ptr, int len)
{
return 0;
}
__attribute__((weak))
int _close(int fd)
{
return -1;
}
#include <sys/stat.h>
__attribute__((weak))
int _fstat(int fd, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
__attribute__((weak))
int _isatty(int fd)
{
return 1;
}
__attribute__((weak))
int _lseek(int fd, long long offset, int whence)
{
return -1;
}
__attribute__((weak))
void _exit(int status)
{
while (1);
}
__attribute__((weak))
void __cxa_pure_virtual()
{
while (1);
}
__attribute__((weak))
int __cxa_guard_acquire (char *g)
{
return !(*g);
}
__attribute__((weak))
void __cxa_guard_release(char *g)
{
*g = 1;
}
int nvic_execution_priority(void)
{
int priority=256;
uint32_t primask, faultmask, basepri, ipsr;
// full algorithm in ARM DDI0403D, page B1-639
// this isn't quite complete, but hopefully good enough
__asm__ volatile("mrs %0, faultmask\n" : "=r" (faultmask)::);
if (faultmask) return -1;
__asm__ volatile("mrs %0, primask\n" : "=r" (primask)::);
if (primask) return 0;
__asm__ volatile("mrs %0, ipsr\n" : "=r" (ipsr)::);
if (ipsr) {
if (ipsr < 16) priority = 0; // could be non-zero
else priority = NVIC_GET_PRIORITY(ipsr - 16);
}
__asm__ volatile("mrs %0, basepri\n" : "=r" (basepri)::);
if (basepri > 0 && basepri < priority) priority = basepri;
return priority;
}