micropython/ports/stm32/adc.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

971 lines
36 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/mphal.h"
#include "adc.h"
#include "pin.h"
#include "timer.h"
#if MICROPY_HW_ENABLE_ADC
/// \moduleref pyb
/// \class ADC - analog to digital conversion: read analog values on a pin
///
/// Usage:
///
/// adc = pyb.ADC(pin) # create an analog object from a pin
/// val = adc.read() # read an analog value
///
/// adc = pyb.ADCAll(resolution) # creale an ADCAll object
/// val = adc.read_channel(channel) # read the given channel
/// val = adc.read_core_temp() # read MCU temperature
/// val = adc.read_core_vbat() # read MCU VBAT
/// val = adc.read_core_vref() # read MCU VREF
/* ADC definitions */
#define ADCx (ADC1)
#define PIN_ADC_MASK PIN_ADC1
#define pin_adc_table pin_adc1
#if defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || \
defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
#define ADCALLx (ADC2)
#define pin_adcall_table pin_adc2
#elif defined(STM32H7)
// On the H7 ADC3 is used for ADCAll to be able to read internal
// channels. For all other GPIO channels, ADC12 is used instead.
#define ADCALLx (ADC3)
#define pin_adcall_table pin_adc3
#else
// Use ADC1 for ADCAll instance by default for all other MCUs.
#define ADCALLx (ADC1)
#define pin_adcall_table pin_adc1
#endif
#define ADCx_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE
2018-05-28 09:10:53 +01:00
#if defined(STM32F0)
#define ADC_SCALE_V (3.3f)
2018-05-28 09:10:53 +01:00
#define ADC_CAL_ADDRESS (0x1ffff7ba)
#define ADC_CAL1 ((uint16_t *)0x1ffff7b8)
#define ADC_CAL2 ((uint16_t *)0x1ffff7c2)
#define ADC_CAL_BITS (12)
2018-05-28 09:10:53 +01:00
#elif defined(STM32F4)
#define ADC_SCALE_V (3.3f)
#define ADC_CAL_ADDRESS (0x1fff7a2a)
#define ADC_CAL1 ((uint16_t *)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t *)(ADC_CAL_ADDRESS + 4))
#define ADC_CAL_BITS (12)
#elif defined(STM32F7)
#define ADC_SCALE_V (3.3f)
#if defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx)
#define ADC_CAL_ADDRESS (0x1ff07a2a)
#else
#define ADC_CAL_ADDRESS (0x1ff0f44a)
#endif
#define ADC_CAL1 ((uint16_t *)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t *)(ADC_CAL_ADDRESS + 4))
#define ADC_CAL_BITS (12)
#elif defined(STM32G0) || defined(STM32G4)
#define ADC_SCALE_V (((float)VREFINT_CAL_VREF) / 1000.0f)
#define ADC_CAL_ADDRESS VREFINT_CAL_ADDR
#define ADC_CAL1 TEMPSENSOR_CAL1_ADDR
#define ADC_CAL2 TEMPSENSOR_CAL2_ADDR
#define ADC_CAL_BITS (12) // UM2319/UM2570, __HAL_ADC_CALC_TEMPERATURE: 'corresponds to a resolution of 12 bits'
#elif defined(STM32H7)
#define ADC_SCALE_V (3.3f)
#define ADC_CAL_ADDRESS (0x1FF1E860)
#define ADC_CAL1 ((uint16_t *)(0x1FF1E820))
#define ADC_CAL2 ((uint16_t *)(0x1FF1E840))
#define ADC_CAL_BITS (16)
#elif defined(STM32L1)
#define ADC_SCALE_V (VREFINT_CAL_VREF / 1000.0f)
#define ADC_CAL_ADDRESS (VREFINT_CAL_ADDR)
#define ADC_CAL1 (TEMPSENSOR_CAL1_ADDR)
#define ADC_CAL2 (TEMPSENSOR_CAL2_ADDR)
#define ADC_CAL_BITS (12)
#elif defined(STM32L4) || defined(STM32WB)
#define ADC_SCALE_V (VREFINT_CAL_VREF / 1000.0f)
#define ADC_CAL_ADDRESS (VREFINT_CAL_ADDR)
#define ADC_CAL1 (TEMPSENSOR_CAL1_ADDR)
#define ADC_CAL2 (TEMPSENSOR_CAL2_ADDR)
#define ADC_CAL_BITS (12)
#else
#error Unsupported processor
#endif
2018-05-28 09:10:53 +01:00
#if defined(STM32F091xC)
#define VBAT_DIV (2)
#elif defined(STM32F405xx) || defined(STM32F415xx) || \
defined(STM32F407xx) || defined(STM32F417xx) || \
defined(STM32F401xC) || defined(STM32F401xE)
#define VBAT_DIV (2)
2020-05-14 14:56:26 +01:00
#elif defined(STM32F411xE) || defined(STM32F412Zx) || \
defined(STM32F413xx) || defined(STM32F427xx) || \
defined(STM32F429xx) || defined(STM32F437xx) || \
defined(STM32F439xx) || defined(STM32F446xx) || \
defined(STM32F479xx)
#define VBAT_DIV (4)
#elif defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx) || \
defined(STM32F745xx) || \
defined(STM32F746xx) || defined(STM32F765xx) || \
defined(STM32F767xx) || defined(STM32F769xx)
#define VBAT_DIV (4)
#elif defined(STM32G0) || defined(STM32G4)
#define VBAT_DIV (3)
#elif defined(STM32H743xx) || defined(STM32H747xx) || \
defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || \
defined(STM32H7B3xx) || defined(STM32H7B3xxQ) || \
defined(STM32H750xx)
#define VBAT_DIV (4)
2019-05-20 13:00:41 +01:00
#elif defined(STM32L432xx) || \
defined(STM32L451xx) || defined(STM32L452xx) || \
defined(STM32L462xx) || defined(STM32L475xx) || \
defined(STM32L476xx) || defined(STM32L496xx) || \
defined(STM32WB55xx)
#define VBAT_DIV (3)
#elif defined(STM32L152xE)
// STM32L152xE does not have vbat.
#else
#error Unsupported processor
#endif
// Timeout for waiting for end-of-conversion, in ms
#define EOC_TIMEOUT (10)
/* Core temperature sensor definitions */
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resolution) */
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resolution) */
// scale and calibration values for VBAT and VREF
#define ADC_SCALE (ADC_SCALE_V / ((1 << ADC_CAL_BITS) - 1))
#define VREFIN_CAL ((uint16_t *)ADC_CAL_ADDRESS)
#ifndef __HAL_ADC_IS_CHANNEL_INTERNAL
#if defined(STM32L1)
#define __HAL_ADC_IS_CHANNEL_INTERNAL(channel) \
(channel == ADC_CHANNEL_VREFINT \
|| channel == ADC_CHANNEL_TEMPSENSOR)
#else
#define __HAL_ADC_IS_CHANNEL_INTERNAL(channel) \
(channel == ADC_CHANNEL_VBAT \
|| channel == ADC_CHANNEL_VREFINT \
|| channel == ADC_CHANNEL_TEMPSENSOR)
#endif
#endif
typedef struct _pyb_obj_adc_t {
mp_obj_base_t base;
mp_obj_t pin_name;
uint32_t channel;
ADC_HandleTypeDef handle;
} pyb_obj_adc_t;
// convert user-facing channel number into internal channel number
static inline uint32_t adc_get_internal_channel(uint32_t channel) {
#if defined(STM32F4) || defined(STM32F7)
// on F4 and F7 MCUs we want channel 16 to always be the TEMPSENSOR
// (on some MCUs ADC_CHANNEL_TEMPSENSOR=16, on others it doesn't)
if (channel == 16) {
channel = ADC_CHANNEL_TEMPSENSOR;
}
#endif
return channel;
}
STATIC bool is_adcx_channel(int channel) {
#if defined(STM32F411xE)
// The HAL has an incorrect IS_ADC_CHANNEL macro for the F411 so we check for temp
return IS_ADC_CHANNEL(channel) || channel == ADC_CHANNEL_TEMPSENSOR;
#elif defined(STM32F0) || defined(STM32F4) || defined(STM32F7)
return IS_ADC_CHANNEL(channel);
#elif defined(STM32L1)
// The HAL of STM32L1 defines some channels those may not be available on package
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| (channel < MP_ARRAY_SIZE(pin_adcall_table) && pin_adcall_table[channel]);
#elif defined(STM32G0) || defined(STM32H7)
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| IS_ADC_CHANNEL(__HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel));
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
ADC_HandleTypeDef handle;
handle.Instance = ADCx;
return __HAL_ADC_IS_CHANNEL_INTERNAL(channel)
|| IS_ADC_CHANNEL(&handle, __HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel));
#else
#error Unsupported processor
#endif
}
STATIC void adc_wait_for_eoc_or_timeout(ADC_HandleTypeDef *adcHandle, int32_t timeout) {
uint32_t tickstart = HAL_GetTick();
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
while ((adcHandle->Instance->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
while (READ_BIT(adcHandle->Instance->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#else
#error Unsupported processor
#endif
if (((HAL_GetTick() - tickstart) > timeout)) {
break; // timeout
}
}
}
STATIC void adcx_clock_enable(ADC_HandleTypeDef *adch) {
#if defined(STM32F0) || defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
ADCx_CLK_ENABLE();
#elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
__HAL_RCC_ADC12_CLK_ENABLE();
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
#elif defined(STM32G0)
__HAL_RCC_ADC_CLK_ENABLE();
#elif defined(STM32G4)
__HAL_RCC_ADC12_CLK_ENABLE();
#elif defined(STM32H7)
if (adch->Instance == ADC3) {
__HAL_RCC_ADC3_CLK_ENABLE();
} else {
__HAL_RCC_ADC12_CLK_ENABLE();
}
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
#elif defined(STM32L4) || defined(STM32WB)
if (__HAL_RCC_GET_ADC_SOURCE() == RCC_ADCCLKSOURCE_NONE) {
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
}
__HAL_RCC_ADC_CLK_ENABLE();
#else
#error Unsupported processor
#endif
}
STATIC void adcx_init_periph(ADC_HandleTypeDef *adch, uint32_t resolution) {
adcx_clock_enable(adch);
adch->Init.Resolution = resolution;
adch->Init.ContinuousConvMode = DISABLE;
adch->Init.DiscontinuousConvMode = DISABLE;
#if !defined(STM32F0) && !defined(STM32G0)
adch->Init.NbrOfDiscConversion = 0;
#endif
#if !defined(STM32F0)
adch->Init.NbrOfConversion = 1;
2018-05-28 09:10:53 +01:00
#endif
adch->Init.EOCSelection = ADC_EOC_SINGLE_CONV;
adch->Init.ExternalTrigConv = ADC_SOFTWARE_START;
adch->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
#if defined(STM32F0)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; // 12MHz
adch->Init.ScanConvMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
adch->Init.SamplingTimeCommon = ADC_SAMPLETIME_55CYCLES_5; // ~4uS
#elif defined(STM32F4) || defined(STM32F7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
adch->Init.ScanConvMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#elif defined(STM32H7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
adch->Init.ScanConvMode = DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
adch->Init.OversamplingMode = DISABLE;
adch->Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
adch->Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
#elif defined(STM32L1)
adch->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adch->Init.ScanConvMode = ADC_SCAN_DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
adch->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adch->Init.ScanConvMode = ADC_SCAN_DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_PRESERVED;
adch->Init.OversamplingMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#else
#error Unsupported processor
#endif
HAL_ADC_Init(adch);
#if defined(STM32H7)
HAL_ADCEx_Calibration_Start(adch, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
#endif
#if defined(STM32G0)
HAL_ADCEx_Calibration_Start(adch);
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
HAL_ADCEx_Calibration_Start(adch, ADC_SINGLE_ENDED);
#endif
}
STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) {
adc_obj->handle.Instance = ADCx;
adcx_init_periph(&adc_obj->handle, ADC_RESOLUTION_12B);
#if (defined(STM32G4) || defined(STM32L4)) && defined(ADC_DUALMODE_REGSIMULT_INJECSIMULT)
ADC_MultiModeTypeDef multimode;
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&adc_obj->handle, &multimode) != HAL_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Can not set multimode on ADC1 channel: %d"), adc_obj->channel);
}
#endif
}
STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) {
ADC_ChannelConfTypeDef sConfig;
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
sConfig.Rank = ADC_REGULAR_RANK_1;
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel) == 0) {
channel = __HAL_ADC_DECIMAL_NB_TO_CHANNEL(channel);
}
#else
sConfig.Rank = 1;
#endif
sConfig.Channel = channel;
2018-05-28 09:10:53 +01:00
#if defined(STM32F0)
sConfig.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
2018-05-28 09:10:53 +01:00
#elif defined(STM32F4) || defined(STM32F7)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
}
#elif defined(STM32H7)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_810CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
}
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.OffsetRightShift = DISABLE;
sConfig.OffsetSignedSaturation = DISABLE;
#elif defined(STM32L1)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
}
#elif defined(STM32G0)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_160CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
}
#elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB)
if (__HAL_ADC_IS_CHANNEL_INTERNAL(channel)) {
sConfig.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
} else {
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
}
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
2018-05-28 09:10:53 +01:00
sConfig.Offset = 0;
#else
#error Unsupported processor
#endif
#if defined(STM32F0)
// On the STM32F0 we must select only one channel at a time to sample, so clear all
// channels before calling HAL_ADC_ConfigChannel, which will select the desired one.
adc_handle->Instance->CHSELR = 0;
#endif
HAL_ADC_ConfigChannel(adc_handle, &sConfig);
}
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
HAL_ADC_Start(adcHandle);
adc_wait_for_eoc_or_timeout(adcHandle, EOC_TIMEOUT);
uint32_t value = adcHandle->Instance->DR;
HAL_ADC_Stop(adcHandle);
return value;
}
STATIC uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
adc_config_channel(adcHandle, channel);
uint32_t raw_value = adc_read_channel(adcHandle);
// ST docs say that (at least on STM32F42x and STM32F43x), VBATE must
// be disabled when TSVREFE is enabled for TEMPSENSOR and VREFINT
// conversions to work. VBATE is enabled by the above call to read
// the channel, and here we disable VBATE so a subsequent call for
// TEMPSENSOR or VREFINT works correctly.
// It's also good to disable the VBAT switch to prevent battery drain,
// so disable it for all MCUs.
adc_deselect_vbat(adcHandle->Instance, channel);
return raw_value;
}
/******************************************************************************/
/* MicroPython bindings : adc object (single channel) */
STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
mp_print_str(print, "<ADC on ");
mp_obj_print_helper(print, self->pin_name, PRINT_STR);
mp_printf(print, " channel=%u>", self->channel);
}
/// \classmethod \constructor(pin)
/// Create an ADC object associated with the given pin.
/// This allows you to then read analog values on that pin.
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// 1st argument is the pin name
mp_obj_t pin_obj = args[0];
uint32_t channel;
if (mp_obj_is_int(pin_obj)) {
channel = adc_get_internal_channel(mp_obj_get_int(pin_obj));
} else {
const pin_obj_t *pin = pin_find(pin_obj);
if ((pin->adc_num & PIN_ADC_MASK) == 0) {
// No ADC function on the given pin.
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have ADC capabilities"), pin->name);
}
channel = pin->adc_channel;
}
if (!is_adcx_channel(channel)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("not a valid ADC Channel: %d"), channel);
}
// If this channel corresponds to a pin then configure the pin in ADC mode.
if (channel < MP_ARRAY_SIZE(pin_adc_table)) {
const pin_obj_t *pin = pin_adc_table[channel];
if (pin != NULL) {
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
}
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
memset(o, 0, sizeof(*o));
o->base.type = &pyb_adc_type;
o->pin_name = pin_obj;
o->channel = channel;
adc_init_single(o);
return MP_OBJ_FROM_PTR(o);
}
/// \method read()
/// Read the value on the analog pin and return it. The returned value
/// will be between 0 and 4095.
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(adc_config_and_read_channel(&self->handle, self->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
/// \method read_timed(buf, timer)
///
/// Read analog values into `buf` at a rate set by the `timer` object.
///
/// `buf` can be bytearray or array.array for example. The ADC values have
/// 12-bit resolution and are stored directly into `buf` if its element size is
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
/// the sample resolution will be reduced to 8 bits.
///
/// `timer` should be a Timer object, and a sample is read each time the timer
/// triggers. The timer must already be initialised and running at the desired
/// sampling frequency.
///
/// To support previous behaviour of this function, `timer` can also be an
/// integer which specifies the frequency (in Hz) to sample at. In this case
/// Timer(6) will be automatically configured to run at the given frequency.
///
/// Example using a Timer object (preferred way):
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
/// buf = bytearray(100) # creat a buffer to store the samples
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
///
/// Example using an integer for the frequency:
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// buf = bytearray(100) # create a buffer of 100 bytes
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
/// # this will take 10 seconds to finish
/// for val in buf: # loop over all values
/// print(val) # print the value out
///
/// This function does not allocate any memory.
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
TIM_HandleTypeDef *tim;
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// freq in Hz given so init TIM6 (legacy behaviour)
tim = timer_tim6_init(mp_obj_get_int(freq_in));
HAL_TIM_Base_Start(tim);
} else
#endif
{
// use the supplied timer object as the sampling time base
tim = pyb_timer_get_handle(freq_in);
}
// configure the ADC channel
adc_config_channel(&self->handle, self->channel);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
uint nelems = bufinfo.len / typesize;
for (uint index = 0; index < nelems; index++) {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
if (index == 0) {
// for the first sample we need to turn the ADC on
HAL_ADC_Start(&self->handle);
} else {
// for subsequent samples we can just set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
self->handle.Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
SET_BIT(self->handle.Instance->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
}
// wait for sample to complete
adc_wait_for_eoc_or_timeout(&self->handle, EOC_TIMEOUT);
// read value
uint value = self->handle.Instance->DR;
// store value in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
}
// turn the ADC off
HAL_ADC_Stop(&self->handle);
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// stop timer if we initialised TIM6 in this function (legacy behaviour)
HAL_TIM_Base_Stop(tim);
}
#endif
return mp_obj_new_int(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
// read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
//
// Read analog values from multiple ADC's into buffers at a rate set by the
// timer. The ADC values have 12-bit resolution and are stored directly into
// the corresponding buffer if its element size is 16 bits or greater, otherwise
// the sample resolution will be reduced to 8 bits.
//
// This function should not allocate any heap memory.
STATIC mp_obj_t adc_read_timed_multi(mp_obj_t adc_array_in, mp_obj_t buf_array_in, mp_obj_t tim_in) {
size_t nadcs, nbufs;
mp_obj_t *adc_array, *buf_array;
mp_obj_get_array(adc_array_in, &nadcs, &adc_array);
mp_obj_get_array(buf_array_in, &nbufs, &buf_array);
if (nadcs < 1) {
mp_raise_ValueError(MP_ERROR_TEXT("need at least 1 ADC"));
}
if (nadcs != nbufs) {
mp_raise_ValueError(MP_ERROR_TEXT("length of ADC and buffer lists differ"));
}
// Get buf for first ADC, get word size, check other buffers match in type
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_array[0], &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
void *bufptrs[nbufs];
for (uint array_index = 0; array_index < nbufs; array_index++) {
mp_buffer_info_t bufinfo_curr;
mp_get_buffer_raise(buf_array[array_index], &bufinfo_curr, MP_BUFFER_WRITE);
if ((bufinfo.len != bufinfo_curr.len) || (bufinfo.typecode != bufinfo_curr.typecode)) {
mp_raise_ValueError(MP_ERROR_TEXT("size and type of buffers must match"));
}
bufptrs[array_index] = bufinfo_curr.buf;
}
// Use the supplied timer object as the sampling time base
TIM_HandleTypeDef *tim;
tim = pyb_timer_get_handle(tim_in);
// Start adc; this is slow so wait for it to start
pyb_obj_adc_t *adc0 = MP_OBJ_TO_PTR(adc_array[0]);
adc_config_channel(&adc0->handle, adc0->channel);
HAL_ADC_Start(&adc0->handle);
// Wait for sample to complete and discard
adc_wait_for_eoc_or_timeout(&adc0->handle, EOC_TIMEOUT);
// Read (and discard) value
uint value = adc0->handle.Instance->DR;
// Ensure first sample is on a timer tick
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
// Overrun check: assume success
bool success = true;
size_t nelems = bufinfo.len / typesize;
for (size_t elem_index = 0; elem_index < nelems; elem_index++) {
if (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) != RESET) {
// Timer has already triggered
success = false;
} else {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
for (size_t array_index = 0; array_index < nadcs; array_index++) {
pyb_obj_adc_t *adc = MP_OBJ_TO_PTR(adc_array[array_index]);
// configure the ADC channel
adc_config_channel(&adc->handle, adc->channel);
// for the first sample we need to turn the ADC on
// ADC is started: set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7) || defined(STM32L1)
adc->handle.Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
SET_BIT(adc->handle.Instance->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
// wait for sample to complete
adc_wait_for_eoc_or_timeout(&adc->handle, EOC_TIMEOUT);
// read value
value = adc->handle.Instance->DR;
// store values in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufptrs[array_index], elem_index, value);
}
}
// Turn the ADC off
adc0 = MP_OBJ_TO_PTR(adc_array[0]);
HAL_ADC_Stop(&adc0->handle);
return mp_obj_new_bool(success);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_multi_fun_obj, adc_read_timed_multi);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(adc_read_timed_multi_obj, MP_ROM_PTR(&adc_read_timed_multi_fun_obj));
STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&adc_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed), MP_ROM_PTR(&adc_read_timed_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed_multi), MP_ROM_PTR(&adc_read_timed_multi_obj) },
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_adc_type,
MP_QSTR_ADC,
MP_TYPE_FLAG_NONE,
make_new, adc_make_new,
print, adc_print,
locals_dict, &adc_locals_dict
);
/******************************************************************************/
/* adc all object */
typedef struct _pyb_adc_all_obj_t {
mp_obj_base_t base;
ADC_HandleTypeDef handle;
} pyb_adc_all_obj_t;
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle);
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) {
switch (resolution) {
#if !defined(STM32H7)
case 6:
resolution = ADC_RESOLUTION_6B;
break;
#endif
case 8:
resolution = ADC_RESOLUTION_8B;
break;
case 10:
resolution = ADC_RESOLUTION_10B;
break;
case 12:
resolution = ADC_RESOLUTION_12B;
break;
#if defined(STM32H7)
case 16:
resolution = ADC_RESOLUTION_16B;
break;
#endif
default:
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("resolution %d not supported"), resolution);
}
for (uint32_t channel = 0; channel < MP_ARRAY_SIZE(pin_adcall_table); ++channel) {
// only initialise those channels that are selected with the en_mask
if (en_mask & (1 << channel)) {
// If this channel corresponds to a pin then configure the pin in ADC mode.
const pin_obj_t *pin = pin_adcall_table[channel];
if (pin) {
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
}
}
adc_all->handle.Instance = ADCALLx;
adcx_init_periph(&adc_all->handle, resolution);
}
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32L1)
uint32_t res_reg = adcHandle->Instance->CR1 & ADC_CR1_RES_Msk;
#else
uint32_t res_reg = ADC_GET_RESOLUTION(adcHandle);
#endif
switch (res_reg) {
#if !defined(STM32H7)
case ADC_RESOLUTION_6B:
return 6;
#endif
case ADC_RESOLUTION_8B:
return 8;
case ADC_RESOLUTION_10B:
return 10;
#if defined(STM32H7)
case ADC_RESOLUTION_16B:
return 16;
#endif
}
return 12;
}
STATIC uint32_t adc_config_and_read_ref(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, channel);
// Scale raw reading to the number of bits used by the calibration constants
return raw_value << (ADC_CAL_BITS - adc_get_resolution(adcHandle));
}
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32G4)
int32_t raw_value = 0;
if (adcHandle->Instance == ADC1) {
raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR_ADC1);
} else {
return 0;
}
#else
int32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR);
#endif
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
}
#if MICROPY_PY_BUILTINS_FLOAT
// correction factor for reference value
STATIC volatile float adc_refcor = 1.0f;
float adc_read_core_temp_float(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32G4)
int32_t raw_value = 0;
if (adcHandle->Instance == ADC1) {
raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR_ADC1);
} else {
return 0;
}
#else
#if defined(STM32L1)
// Update the reference correction factor before reading tempsensor
// because TS_CAL1 and TS_CAL2 of STM32L1 are at VDDA=3.0V
adc_read_core_vref(adcHandle);
#endif
int32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_TEMPSENSOR);
#endif
float core_temp_avg_slope = (*ADC_CAL2 - *ADC_CAL1) / 80.0f;
return (((float)raw_value * adc_refcor - *ADC_CAL1) / core_temp_avg_slope) + 30.0f;
}
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
#if defined(STM32L152xE)
mp_raise_NotImplementedError(MP_ERROR_TEXT("read_core_vbat not supported"));
#else
uint32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_VBAT);
return raw_value * VBAT_DIV * ADC_SCALE * adc_refcor;
#endif
}
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_ref(adcHandle, ADC_CHANNEL_VREFINT);
// update the reference correction factor
adc_refcor = ((float)(*VREFIN_CAL)) / ((float)raw_value);
return (*VREFIN_CAL) * ADC_SCALE;
}
#endif
/******************************************************************************/
/* MicroPython bindings : adc_all object */
STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 2, false);
// make ADCAll object
pyb_adc_all_obj_t *o = mp_obj_malloc(pyb_adc_all_obj_t, &pyb_adc_all_type);
mp_int_t res = mp_obj_get_int(args[0]);
uint32_t en_mask = 0xffffffff;
if (n_args > 1) {
en_mask = mp_obj_get_int(args[1]);
}
adc_init_all(o, res, en_mask);
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t chan = adc_get_internal_channel(mp_obj_get_int(channel));
if (!is_adcx_channel(chan)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("not a valid ADC Channel: %d"), chan);
}
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
#if MICROPY_PY_BUILTINS_FLOAT
float data = adc_read_core_temp_float(&self->handle);
return mp_obj_new_float(data);
#else
int data = adc_read_core_temp(&self->handle);
return mp_obj_new_int(data);
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
#if MICROPY_PY_BUILTINS_FLOAT
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
float data = adc_read_core_vbat(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
float data = adc_read_core_vref(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
STATIC mp_obj_t adc_all_read_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = MP_OBJ_TO_PTR(self_in);
adc_read_core_vref(&self->handle);
return mp_obj_new_float(ADC_SCALE_V * adc_refcor);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_vref_obj, adc_all_read_vref);
#endif
STATIC const mp_rom_map_elem_t adc_all_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_channel), MP_ROM_PTR(&adc_all_read_channel_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_temp), MP_ROM_PTR(&adc_all_read_core_temp_obj) },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_ROM_QSTR(MP_QSTR_read_core_vbat), MP_ROM_PTR(&adc_all_read_core_vbat_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_vref), MP_ROM_PTR(&adc_all_read_core_vref_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_vref), MP_ROM_PTR(&adc_all_read_vref_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_adc_all_type,
MP_QSTR_ADCAll,
MP_TYPE_FLAG_NONE,
make_new, adc_all_make_new,
locals_dict, &adc_all_locals_dict
);
#endif // MICROPY_HW_ENABLE_ADC