micropython/ports/stm32/storage.c

263 lines
8.6 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#include "extmod/vfs_fat.h"
#include "led.h"
#include "storage.h"
#include "irq.h"
#if defined(MICROPY_HW_SPIFLASH_SIZE_BITS)
// Use external SPI flash as the storage medium
#define BDEV_NUM_BLOCKS (MICROPY_HW_SPIFLASH_SIZE_BITS / 8 / FLASH_BLOCK_SIZE)
#define BDEV_INIT spi_bdev_init
#define BDEV_READBLOCK spi_bdev_readblock
#define BDEV_WRITEBLOCK spi_bdev_writeblock
#else
// Use internal flash as the storage medium
#define BDEV_NUM_BLOCKS flash_bdev_num_blocks()
#define BDEV_INIT flash_bdev_init
#define BDEV_IRQ_HANDLER flash_bdev_irq_handler
#define BDEV_FLUSH flash_bdev_flush
#define BDEV_READBLOCK flash_bdev_readblock
#define BDEV_WRITEBLOCK flash_bdev_writeblock
#endif
#define FLASH_PART1_START_BLOCK (0x100)
static bool storage_is_initialised = false;
void storage_init(void) {
if (!storage_is_initialised) {
storage_is_initialised = true;
BDEV_INIT();
#if defined(BDEV_IRQ_HANDLER)
// Enable the flash IRQ, which is used to also call our storage IRQ handler
// It needs to go at a higher priority than all those components that rely on
// the flash storage (eg higher than USB MSC).
HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH);
HAL_NVIC_EnableIRQ(FLASH_IRQn);
#endif
}
}
uint32_t storage_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
uint32_t storage_get_block_count(void) {
return FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS;
}
void storage_irq_handler(void) {
#if defined(BDEV_IRQ_HANDLER)
BDEV_IRQ_HANDLER();
#endif
}
void storage_flush(void) {
#if defined(BDEV_FLUSH)
BDEV_FLUSH();
#endif
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
bool storage_read_block(uint8_t *dest, uint32_t block) {
//printf("RD %u\n", block);
if (block == 0) {
// fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, BDEV_NUM_BLOCKS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS) {
return BDEV_READBLOCK(dest, block - FLASH_PART1_START_BLOCK);
} else {
return false;
}
}
bool storage_write_block(const uint8_t *src, uint32_t block) {
//printf("WR %u\n", block);
if (block == 0) {
// can't write MBR, but pretend we did
return true;
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS) {
return BDEV_WRITEBLOCK(src, block - FLASH_PART1_START_BLOCK);
} else {
return false;
}
}
mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t pyb_flash_obj = {&pyb_flash_type};
STATIC mp_obj_t pyb_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&pyb_flash_obj;
}
STATIC mp_obj_t pyb_flash_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = storage_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_readblocks_obj, pyb_flash_readblocks);
STATIC mp_obj_t pyb_flash_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = storage_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_writeblocks_obj, pyb_flash_writeblocks);
STATIC mp_obj_t pyb_flash_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: storage_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(storage_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(storage_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_flash_ioctl_obj, pyb_flash_ioctl);
STATIC const mp_rom_map_elem_t pyb_flash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_flash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_flash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_flash_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_flash_locals_dict, pyb_flash_locals_dict_table);
const mp_obj_type_t pyb_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_Flash,
.make_new = pyb_flash_make_new,
.locals_dict = (mp_obj_dict_t*)&pyb_flash_locals_dict,
};
void pyb_flash_init_vfs(fs_user_mount_t *vfs) {
vfs->base.type = &mp_fat_vfs_type;
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->fatfs.drv = vfs;
vfs->fatfs.part = 1; // flash filesystem lives on first partition
vfs->readblocks[0] = (mp_obj_t)&pyb_flash_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&pyb_flash_obj;
vfs->readblocks[2] = (mp_obj_t)storage_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&pyb_flash_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&pyb_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)storage_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&pyb_flash_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&pyb_flash_obj;
}