micropython/extmod/nimble/modbluetooth_nimble.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2041 lines
81 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
* Copyright (c) 2019-2020 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#if MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE
#include "extmod/nimble/modbluetooth_nimble.h"
#include "extmod/modbluetooth.h"
#include "extmod/mpbthci.h"
#include "host/ble_hs.h"
#include "host/util/util.h"
#include "nimble/ble.h"
#include "nimble/nimble_port.h"
#include "services/gap/ble_svc_gap.h"
#include "services/gatt/ble_svc_gatt.h"
#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
// We need the definition of "struct ble_l2cap_chan".
// See l2cap_channel_event() for details.
#include "nimble/host/src/ble_l2cap_priv.h"
#endif
#if MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD || MICROPY_BLUETOOTH_USE_ZEPHYR_STATIC_ADDRESS
// For ble_hs_hci_cmd_tx
#include "nimble/host/src/ble_hs_hci_priv.h"
#endif
#ifndef MICROPY_PY_BLUETOOTH_DEFAULT_GAP_NAME
#define MICROPY_PY_BLUETOOTH_DEFAULT_GAP_NAME "MPY NIMBLE"
#endif
#define DEBUG_printf(...) // printf("nimble: " __VA_ARGS__)
#define ERRNO_BLUETOOTH_NOT_ACTIVE MP_ENODEV
STATIC uint8_t nimble_address_mode = BLE_OWN_ADDR_RANDOM;
#define NIMBLE_STARTUP_TIMEOUT 2000
// Any BLE_HS_xxx code not in this table will default to MP_EIO.
STATIC int8_t ble_hs_err_to_errno_table[] = {
[BLE_HS_EAGAIN] = MP_EAGAIN,
[BLE_HS_EALREADY] = MP_EALREADY,
[BLE_HS_EINVAL] = MP_EINVAL,
[BLE_HS_ENOENT] = MP_ENOENT,
[BLE_HS_ENOMEM] = MP_ENOMEM,
[BLE_HS_ENOTCONN] = MP_ENOTCONN,
[BLE_HS_ENOTSUP] = MP_EOPNOTSUPP,
[BLE_HS_ETIMEOUT] = MP_ETIMEDOUT,
[BLE_HS_EDONE] = MP_EIO, // TODO: Maybe should be MP_EISCONN (connect uses this for "already connected").
[BLE_HS_EBUSY] = MP_EBUSY,
[BLE_HS_EBADDATA] = MP_EINVAL,
};
STATIC int ble_hs_err_to_errno(int err);
STATIC ble_uuid_t *create_nimble_uuid(const mp_obj_bluetooth_uuid_t *uuid, ble_uuid_any_t *storage);
STATIC void reverse_addr_byte_order(uint8_t *addr_out, const uint8_t *addr_in);
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC mp_obj_bluetooth_uuid_t create_mp_uuid(const ble_uuid_any_t *uuid);
STATIC ble_addr_t create_nimble_addr(uint8_t addr_type, const uint8_t *addr);
#endif
STATIC void reset_cb(int reason);
STATIC bool has_public_address(void);
STATIC void set_random_address(bool nrpa);
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
STATIC int load_irk(void);
#endif
STATIC void sync_cb(void);
#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
STATIC void ble_hs_shutdown_stop_cb(int status, void *arg);
#endif
// Successfully registered service/char/desc handles.
STATIC void gatts_register_cb(struct ble_gatt_register_ctxt *ctxt, void *arg);
// Events about a connected central (we're in peripheral role).
STATIC int central_gap_event_cb(struct ble_gap_event *event, void *arg);
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
// Events about a connected peripheral (we're in central role).
STATIC int peripheral_gap_event_cb(struct ble_gap_event *event, void *arg);
#endif
// Used by both of the above.
STATIC int commmon_gap_event_cb(struct ble_gap_event *event, void *arg);
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
// Scan results.
STATIC int gap_scan_cb(struct ble_gap_event *event, void *arg);
#endif
#if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
// Data available (either due to notify/indicate or successful read).
STATIC void gattc_on_data_available(uint8_t event, uint16_t conn_handle, uint16_t value_handle, const struct os_mbuf *om);
// Client discovery callbacks.
STATIC int ble_gattc_service_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_svc *service, void *arg);
STATIC int ble_gattc_characteristic_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_chr *characteristic, void *arg);
STATIC int ble_gattc_descriptor_cb(uint16_t conn_handle, const struct ble_gatt_error *error, uint16_t characteristic_val_handle, const struct ble_gatt_dsc *descriptor, void *arg);
// Client read/write handlers.
STATIC int ble_gattc_attr_read_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg);
STATIC int ble_gattc_attr_write_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg);
#endif
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
// Bonding store.
STATIC int ble_secret_store_read(int obj_type, const union ble_store_key *key, union ble_store_value *value);
STATIC int ble_secret_store_write(int obj_type, const union ble_store_value *val);
STATIC int ble_secret_store_delete(int obj_type, const union ble_store_key *key);
#endif
STATIC int ble_hs_err_to_errno(int err) {
DEBUG_printf("ble_hs_err_to_errno: %d\n", err);
if (!err) {
return 0;
}
if (err >= 0 && (unsigned)err < MP_ARRAY_SIZE(ble_hs_err_to_errno_table) && ble_hs_err_to_errno_table[err]) {
// Return an MP_Exxx error code.
return ble_hs_err_to_errno_table[err];
} else {
// Pass through the BLE error code.
return -err;
}
}
// Note: modbluetooth UUIDs store their data in LE.
STATIC ble_uuid_t *create_nimble_uuid(const mp_obj_bluetooth_uuid_t *uuid, ble_uuid_any_t *storage) {
if (uuid->type == MP_BLUETOOTH_UUID_TYPE_16) {
ble_uuid16_t *result = storage ? &storage->u16 : m_new(ble_uuid16_t, 1);
result->u.type = BLE_UUID_TYPE_16;
result->value = (uuid->data[1] << 8) | uuid->data[0];
return (ble_uuid_t *)result;
} else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_32) {
ble_uuid32_t *result = storage ? &storage->u32 : m_new(ble_uuid32_t, 1);
result->u.type = BLE_UUID_TYPE_32;
result->value = (uuid->data[1] << 24) | (uuid->data[1] << 16) | (uuid->data[1] << 8) | uuid->data[0];
return (ble_uuid_t *)result;
} else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_128) {
ble_uuid128_t *result = storage ? &storage->u128 : m_new(ble_uuid128_t, 1);
result->u.type = BLE_UUID_TYPE_128;
memcpy(result->value, uuid->data, 16);
return (ble_uuid_t *)result;
} else {
return NULL;
}
}
// modbluetooth (and the layers above it) work in BE for addresses, Nimble works in LE.
STATIC void reverse_addr_byte_order(uint8_t *addr_out, const uint8_t *addr_in) {
for (int i = 0; i < 6; ++i) {
addr_out[i] = addr_in[5 - i];
}
}
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC mp_obj_bluetooth_uuid_t create_mp_uuid(const ble_uuid_any_t *uuid) {
mp_obj_bluetooth_uuid_t result;
result.base.type = &mp_type_bluetooth_uuid;
switch (uuid->u.type) {
case BLE_UUID_TYPE_16:
result.type = MP_BLUETOOTH_UUID_TYPE_16;
result.data[0] = uuid->u16.value & 0xff;
result.data[1] = (uuid->u16.value >> 8) & 0xff;
break;
case BLE_UUID_TYPE_32:
result.type = MP_BLUETOOTH_UUID_TYPE_32;
result.data[0] = uuid->u32.value & 0xff;
result.data[1] = (uuid->u32.value >> 8) & 0xff;
result.data[2] = (uuid->u32.value >> 16) & 0xff;
result.data[3] = (uuid->u32.value >> 24) & 0xff;
break;
case BLE_UUID_TYPE_128:
result.type = MP_BLUETOOTH_UUID_TYPE_128;
memcpy(result.data, uuid->u128.value, 16);
break;
default:
assert(false);
}
return result;
}
STATIC ble_addr_t create_nimble_addr(uint8_t addr_type, const uint8_t *addr) {
ble_addr_t addr_nimble;
addr_nimble.type = addr_type;
// Incoming addr is from modbluetooth (BE), so copy and convert to LE for Nimble.
reverse_addr_byte_order(addr_nimble.val, addr);
return addr_nimble;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
volatile int mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;
STATIC void reset_cb(int reason) {
(void)reason;
}
STATIC bool has_public_address(void) {
return ble_hs_id_copy_addr(BLE_ADDR_PUBLIC, NULL, NULL) == 0;
}
STATIC void set_random_address(bool nrpa) {
int rc;
(void)rc;
ble_addr_t addr;
#if MICROPY_BLUETOOTH_USE_MP_HAL_GET_MAC_STATIC_ADDRESS
if (!nrpa) {
DEBUG_printf("set_random_address: Generating static address using mp_hal_get_mac\n");
uint8_t hal_mac_addr[6];
mp_hal_get_mac(MP_HAL_MAC_BDADDR, hal_mac_addr);
addr = create_nimble_addr(BLE_ADDR_RANDOM, hal_mac_addr);
// Mark it as STATIC (not RPA or NRPA).
addr.val[5] |= 0xc0;
} else
#elif MICROPY_BLUETOOTH_USE_ZEPHYR_STATIC_ADDRESS
if (!nrpa) {
DEBUG_printf("set_random_address: Generating static address from Zephyr controller\n");
uint8_t buf[23];
rc = ble_hs_hci_cmd_tx(BLE_HCI_OP(BLE_HCI_OGF_VENDOR, 0x09), NULL, 0, buf, sizeof(buf));
assert(rc == 0);
memcpy(addr.val, buf + 1, 6);
} else
#endif
{
DEBUG_printf("set_random_address: Generating random static address\n");
rc = ble_hs_id_gen_rnd(nrpa ? 1 : 0, &addr);
assert(rc == 0);
}
rc = ble_hs_id_set_rnd(addr.val);
assert(rc == 0);
rc = ble_hs_util_ensure_addr(1);
assert(rc == 0);
}
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
// For ble_hs_pvcy_set_our_irk
#include "nimble/host/src/ble_hs_pvcy_priv.h"
// For ble_hs_hci_util_rand
#include "nimble/host/src/ble_hs_hci_priv.h"
// For ble_hs_misc_restore_irks
#include "nimble/host/src/ble_hs_priv.h"
// Must be distinct to BLE_STORE_OBJ_TYPE_ in ble_store.h.
#define SECRET_TYPE_OUR_IRK 10
STATIC int load_irk(void) {
// NimBLE unconditionally loads a fixed IRK on startup.
// See https://github.com/apache/mynewt-nimble/issues/887
// Dummy key to use for the store.
// Technically the secret type is enough as there will only be
// one IRK so the key doesn't matter, but a NULL (None) key means "search".
const uint8_t key[3] = {'i', 'r', 'k'};
int rc;
const uint8_t *irk;
size_t irk_len;
if (mp_bluetooth_gap_on_get_secret(SECRET_TYPE_OUR_IRK, 0, key, sizeof(key), &irk, &irk_len) && irk_len == 16) {
DEBUG_printf("load_irk: Applying IRK from store.\n");
rc = ble_hs_pvcy_set_our_irk(irk);
if (rc) {
return rc;
}
} else {
DEBUG_printf("load_irk: Generating new IRK.\n");
uint8_t rand_irk[16];
rc = ble_hs_hci_util_rand(rand_irk, 16);
if (rc) {
return rc;
}
DEBUG_printf("load_irk: Saving new IRK.\n");
if (!mp_bluetooth_gap_on_set_secret(SECRET_TYPE_OUR_IRK, key, sizeof(key), rand_irk, 16)) {
// Code that doesn't implement pairing/bonding won't support set/get secret.
// So they'll just get the default fixed IRK.
return 0;
}
DEBUG_printf("load_irk: Applying new IRK.\n");
rc = ble_hs_pvcy_set_our_irk(rand_irk);
if (rc) {
return rc;
}
}
// Loading an IRK will clear all peer IRKs, so reload them from the store.
rc = ble_hs_misc_restore_irks();
return rc;
}
#endif
STATIC void sync_cb(void) {
int rc;
(void)rc;
DEBUG_printf("sync_cb: state=%d\n", mp_bluetooth_nimble_ble_state);
if (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_WAITING_FOR_SYNC) {
return;
}
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
rc = load_irk();
assert(rc == 0);
#endif
if (has_public_address()) {
nimble_address_mode = BLE_OWN_ADDR_PUBLIC;
} else {
nimble_address_mode = BLE_OWN_ADDR_RANDOM;
set_random_address(false);
}
if (MP_BLUETOOTH_DEFAULT_ATTR_LEN > 20) {
DEBUG_printf("sync_cb: Setting MTU\n");
rc = ble_att_set_preferred_mtu(MP_BLUETOOTH_DEFAULT_ATTR_LEN + 3);
assert(rc == 0);
}
DEBUG_printf("sync_cb: Setting device name\n");
ble_svc_gap_device_name_set(MICROPY_PY_BLUETOOTH_DEFAULT_GAP_NAME);
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE;
}
STATIC void gatts_register_cb(struct ble_gatt_register_ctxt *ctxt, void *arg) {
if (!mp_bluetooth_is_active()) {
return;
}
switch (ctxt->op) {
case BLE_GATT_REGISTER_OP_SVC:
// Called when a service is successfully registered.
DEBUG_printf("gatts_register_cb: svc uuid=%p handle=%d\n", &ctxt->svc.svc_def->uuid, ctxt->svc.handle);
break;
case BLE_GATT_REGISTER_OP_CHR:
// Called when a characteristic is successfully registered.
DEBUG_printf("gatts_register_cb: chr uuid=%p def_handle=%d val_handle=%d\n", &ctxt->chr.chr_def->uuid, ctxt->chr.def_handle, ctxt->chr.val_handle);
// Note: We will get this event for the default GAP Service, meaning that we allocate storage for the
// "device name" and "appearance" characteristics, even though we never see the reads for them.
// TODO: Possibly check if the service UUID is 0x1801 and ignore?
// Allocate the gatts_db storage for this characteristic.
// Although this function is a callback, it's called synchronously from ble_hs_sched_start/ble_gatts_start, so safe to allocate.
mp_bluetooth_gatts_db_create_entry(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, ctxt->chr.val_handle, MP_BLUETOOTH_DEFAULT_ATTR_LEN);
break;
case BLE_GATT_REGISTER_OP_DSC:
// Called when a descriptor is successfully registered.
// Note: This is event is not called for the CCCD.
DEBUG_printf("gatts_register_cb: dsc uuid=%p handle=%d\n", &ctxt->dsc.dsc_def->uuid, ctxt->dsc.handle);
// See above, safe to alloc.
mp_bluetooth_gatts_db_create_entry(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, ctxt->dsc.handle, MP_BLUETOOTH_DEFAULT_ATTR_LEN);
// Unlike characteristics, we have to manually provide a way to get the handle back to the register method.
*((uint16_t *)ctxt->dsc.dsc_def->arg) = ctxt->dsc.handle;
break;
default:
DEBUG_printf("gatts_register_cb: unknown op %d\n", ctxt->op);
break;
}
}
STATIC int commmon_gap_event_cb(struct ble_gap_event *event, void *arg) {
struct ble_gap_conn_desc desc;
switch (event->type) {
#if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
case BLE_GAP_EVENT_NOTIFY_RX: {
uint16_t ev = event->notify_rx.indication == 0 ? MP_BLUETOOTH_IRQ_GATTC_NOTIFY : MP_BLUETOOTH_IRQ_GATTC_INDICATE;
gattc_on_data_available(ev, event->notify_rx.conn_handle, event->notify_rx.attr_handle, event->notify_rx.om);
return 0;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
case BLE_GAP_EVENT_CONN_UPDATE: {
DEBUG_printf("commmon_gap_event_cb: connection update: status=%d\n", event->conn_update.status);
if (ble_gap_conn_find(event->conn_update.conn_handle, &desc) == 0) {
mp_bluetooth_gap_on_connection_update(event->conn_update.conn_handle, desc.conn_itvl, desc.conn_latency, desc.supervision_timeout, event->conn_update.status == 0 ? 0 : 1);
}
return 0;
}
case BLE_GAP_EVENT_MTU: {
if (event->mtu.channel_id == BLE_L2CAP_CID_ATT) {
DEBUG_printf("commmon_gap_event_cb: mtu update: conn_handle=%d cid=%d mtu=%d\n", event->mtu.conn_handle, event->mtu.channel_id, event->mtu.value);
mp_bluetooth_gatts_on_mtu_exchanged(event->mtu.conn_handle, event->mtu.value);
}
return 0;
}
case BLE_GAP_EVENT_ENC_CHANGE: {
DEBUG_printf("commmon_gap_event_cb: enc change: status=%d\n", event->enc_change.status);
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
if (ble_gap_conn_find(event->enc_change.conn_handle, &desc) == 0) {
mp_bluetooth_gatts_on_encryption_update(event->conn_update.conn_handle,
desc.sec_state.encrypted, desc.sec_state.authenticated,
desc.sec_state.bonded, desc.sec_state.key_size);
}
#endif
return 0;
}
default:
DEBUG_printf("commmon_gap_event_cb: unknown type %d\n", event->type);
return 0;
}
}
STATIC int central_gap_event_cb(struct ble_gap_event *event, void *arg) {
DEBUG_printf("central_gap_event_cb: type=%d\n", event->type);
if (!mp_bluetooth_is_active()) {
return 0;
}
struct ble_gap_conn_desc desc;
uint8_t addr[6] = {0};
switch (event->type) {
case BLE_GAP_EVENT_CONNECT:
DEBUG_printf("central_gap_event_cb: connect: status=%d\n", event->connect.status);
if (event->connect.status == 0) {
// Connection established.
ble_gap_conn_find(event->connect.conn_handle, &desc);
reverse_addr_byte_order(addr, desc.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
} else {
// Connection failed.
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
}
return 0;
case BLE_GAP_EVENT_DISCONNECT:
// Disconnect.
DEBUG_printf("central_gap_event_cb: disconnect: reason=%d\n", event->disconnect.reason);
reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
return 0;
case BLE_GAP_EVENT_NOTIFY_TX: {
DEBUG_printf("central_gap_event_cb: notify_tx: %d %d\n", event->notify_tx.indication, event->notify_tx.status);
// This event corresponds to either a sent notify/indicate (status == 0), or an indication confirmation (status != 0).
if (event->notify_tx.indication && event->notify_tx.status != 0) {
// Map "done/ack" to 0, otherwise pass the status directly.
mp_bluetooth_gatts_on_indicate_complete(event->notify_tx.conn_handle, event->notify_tx.attr_handle, event->notify_tx.status == BLE_HS_EDONE ? 0 : event->notify_tx.status);
}
return 0;
2020-09-11 09:12:36 +01:00
}
case BLE_GAP_EVENT_PHY_UPDATE_COMPLETE:
DEBUG_printf("central_gap_event_cb: phy update: %d\n", event->phy_updated.tx_phy);
return 0;
case BLE_GAP_EVENT_REPEAT_PAIRING: {
// We recognized this peer but the peer doesn't recognize us.
DEBUG_printf("central_gap_event_cb: repeat pairing: conn_handle=%d\n", event->repeat_pairing.conn_handle);
// TODO: Consider returning BLE_GAP_REPEAT_PAIRING_IGNORE (and
// possibly an API to configure this).
// Delete the old bond.
int rc = ble_gap_conn_find(event->repeat_pairing.conn_handle, &desc);
if (rc == 0) {
ble_store_util_delete_peer(&desc.peer_id_addr);
}
// Allow re-pairing.
return BLE_GAP_REPEAT_PAIRING_RETRY;
}
case BLE_GAP_EVENT_PASSKEY_ACTION: {
DEBUG_printf("central_gap_event_cb: passkey action: conn_handle=%d action=%d num=" UINT_FMT "\n", event->passkey.conn_handle, event->passkey.params.action, (mp_uint_t)event->passkey.params.numcmp);
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
mp_bluetooth_gap_on_passkey_action(event->passkey.conn_handle, event->passkey.params.action, event->passkey.params.numcmp);
#endif
return 0;
}
case BLE_GAP_EVENT_SUBSCRIBE: {
DEBUG_printf("central_gap_event_cb: subscribe: handle=%d, reason=%d notify=%d indicate=%d \n", event->subscribe.attr_handle, event->subscribe.reason, event->subscribe.cur_notify, event->subscribe.cur_indicate);
return 0;
}
2020-09-11 09:12:36 +01:00
}
return commmon_gap_event_cb(event, arg);
}
#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
// On ports such as ESP32 where we only implement the bindings, then
// the port must provide these functions.
// But for STM32 / Unix-H4, we provide a default implementation of the
// port-specific functionality.
// TODO: In the future if a port ever needs to customise these functions
// then investigate using MP_WEAK or splitting them out to another .c file.
#include "transport/uart/ble_hci_uart.h"
void mp_bluetooth_nimble_port_hci_init(void) {
DEBUG_printf("mp_bluetooth_nimble_port_hci_init (nimble default)\n");
// This calls mp_bluetooth_hci_uart_init (via ble_hci_uart_init --> hal_uart_config --> mp_bluetooth_hci_uart_init).
ble_hci_uart_init();
mp_bluetooth_hci_controller_init();
}
void mp_bluetooth_nimble_port_hci_deinit(void) {
DEBUG_printf("mp_bluetooth_nimble_port_hci_deinit (nimble default)\n");
mp_bluetooth_hci_controller_deinit();
mp_bluetooth_hci_uart_deinit();
}
void mp_bluetooth_nimble_port_start(void) {
DEBUG_printf("mp_bluetooth_nimble_port_start (nimble default)\n");
// By default, assume port is already running its own background task (e.g. SysTick on STM32).
// ESP32 runs a FreeRTOS task, Unix has a thread.
}
// Called when the host stop procedure has completed.
STATIC void ble_hs_shutdown_stop_cb(int status, void *arg) {
(void)status;
(void)arg;
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;
}
STATIC struct ble_hs_stop_listener ble_hs_shutdown_stop_listener;
void mp_bluetooth_nimble_port_shutdown(void) {
DEBUG_printf("mp_bluetooth_nimble_port_shutdown (nimble default)\n");
// By default, just call ble_hs_stop directly and wait for the stack to stop.
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_STOPPING;
ble_hs_stop(&ble_hs_shutdown_stop_listener, ble_hs_shutdown_stop_cb, NULL);
while (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
MICROPY_EVENT_POLL_HOOK
}
}
#endif // !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
void nimble_reset_gatts_bss(void) {
// NimBLE assumes that service registration only ever happens once, so
// we need to reset service registration state from a previous stack startup.
// These variables are defined in ble_hs.c and are only ever incremented
// (during service registration) and never reset.
// See https://github.com/apache/mynewt-nimble/issues/896
extern uint16_t ble_hs_max_attrs;
extern uint16_t ble_hs_max_services;
extern uint16_t ble_hs_max_client_configs;
ble_hs_max_attrs = 0;
ble_hs_max_services = 0;
ble_hs_max_client_configs = 0;
}
int mp_bluetooth_init(void) {
DEBUG_printf("mp_bluetooth_init\n");
// Clean up if necessary.
mp_bluetooth_deinit();
nimble_reset_gatts_bss();
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_STARTING;
ble_hs_cfg.reset_cb = reset_cb;
ble_hs_cfg.sync_cb = sync_cb;
ble_hs_cfg.gatts_register_cb = gatts_register_cb;
ble_hs_cfg.store_status_cb = ble_store_util_status_rr;
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
ble_hs_cfg.store_read_cb = ble_secret_store_read;
ble_hs_cfg.store_write_cb = ble_secret_store_write;
ble_hs_cfg.store_delete_cb = ble_secret_store_delete;
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
MP_STATE_PORT(bluetooth_nimble_root_pointers) = m_new0(mp_bluetooth_nimble_root_pointers_t, 1);
mp_bluetooth_gatts_db_create(&MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db);
#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
// Dereference any previous NimBLE mallocs.
MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
#endif
// Allow port (ESP32) to override NimBLE's HCI init.
// Otherwise default implementation above calls ble_hci_uart_init().
mp_bluetooth_nimble_port_hci_init();
// Static initialization is complete, can start processing events.
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_WAITING_FOR_SYNC;
// Initialise NimBLE memory and data structures.
DEBUG_printf("mp_bluetooth_init: nimble_port_init\n");
nimble_port_init();
// Make sure that the HCI UART and event handling task is running.
mp_bluetooth_nimble_port_start();
// Run the scheduler while we wait for stack startup.
// On non-ringbuffer builds (NimBLE on STM32/Unix) this will also poll the UART and run the event queue.
mp_uint_t timeout_start_ticks_ms = mp_hal_ticks_ms();
while (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
if (mp_hal_ticks_ms() - timeout_start_ticks_ms > NIMBLE_STARTUP_TIMEOUT) {
break;
}
MICROPY_EVENT_POLL_HOOK
}
if (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
mp_bluetooth_deinit();
return MP_ETIMEDOUT;
}
DEBUG_printf("mp_bluetooth_init: starting services\n");
// By default, just register the default gap/gatt service.
ble_svc_gap_init();
ble_svc_gatt_init();
// The preceding two calls allocate service definitions on the heap,
// then we must now call gatts_start to register those services
// and free the heap memory.
// Otherwise it will be realloc'ed on the next stack startup.
ble_gatts_start();
DEBUG_printf("mp_bluetooth_init: ready\n");
return 0;
}
void mp_bluetooth_deinit(void) {
DEBUG_printf("mp_bluetooth_deinit %d\n", mp_bluetooth_nimble_ble_state);
if (mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
return;
}
// Must call ble_hs_stop() in a port-specific way to stop the background
// task. Default implementation provided above.
if (mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
mp_bluetooth_gap_advertise_stop();
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
mp_bluetooth_gap_scan_stop();
#endif
DEBUG_printf("mp_bluetooth_deinit: starting port shutdown\n");
mp_bluetooth_nimble_port_shutdown();
assert(mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF);
} else {
mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;
}
// Shutdown the HCI controller.
mp_bluetooth_nimble_port_hci_deinit();
MP_STATE_PORT(bluetooth_nimble_root_pointers) = NULL;
#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
// Dereference any previous NimBLE mallocs.
MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
#endif
DEBUG_printf("mp_bluetooth_deinit: shut down\n");
}
bool mp_bluetooth_is_active(void) {
return mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE;
}
void mp_bluetooth_get_current_address(uint8_t *addr_type, uint8_t *addr) {
if (!mp_bluetooth_is_active()) {
mp_raise_OSError(ERRNO_BLUETOOTH_NOT_ACTIVE);
}
uint8_t addr_le[6];
switch (nimble_address_mode) {
case BLE_OWN_ADDR_PUBLIC:
*addr_type = BLE_ADDR_PUBLIC;
break;
case BLE_OWN_ADDR_RANDOM:
*addr_type = BLE_ADDR_RANDOM;
break;
case BLE_OWN_ADDR_RPA_PUBLIC_DEFAULT:
case BLE_OWN_ADDR_RPA_RANDOM_DEFAULT:
default:
// TODO: If RPA/NRPA in use, get the current value.
// Is this even possible in NimBLE?
mp_raise_OSError(MP_EINVAL);
}
int rc = ble_hs_id_copy_addr(*addr_type, addr_le, NULL);
if (rc != 0) {
mp_raise_OSError(MP_EINVAL);
}
reverse_addr_byte_order(addr, addr_le);
}
void mp_bluetooth_set_address_mode(uint8_t addr_mode) {
switch (addr_mode) {
case MP_BLUETOOTH_ADDRESS_MODE_PUBLIC:
if (!has_public_address()) {
// No public address available.
mp_raise_OSError(MP_EINVAL);
}
nimble_address_mode = BLE_OWN_ADDR_PUBLIC;
break;
case MP_BLUETOOTH_ADDRESS_MODE_RANDOM:
// Generate an static random address.
set_random_address(false);
nimble_address_mode = BLE_OWN_ADDR_RANDOM;
break;
case MP_BLUETOOTH_ADDRESS_MODE_RPA:
if (has_public_address()) {
nimble_address_mode = BLE_OWN_ADDR_RPA_PUBLIC_DEFAULT;
} else {
// Generate an static random address to use as the identity address.
set_random_address(false);
nimble_address_mode = BLE_OWN_ADDR_RPA_RANDOM_DEFAULT;
}
break;
case MP_BLUETOOTH_ADDRESS_MODE_NRPA:
// Generate an NRPA.
set_random_address(true);
// In NimBLE, NRPA is treated like a static random address that happens to be an NRPA.
nimble_address_mode = BLE_OWN_ADDR_RANDOM;
break;
}
}
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
void mp_bluetooth_set_bonding(bool enabled) {
ble_hs_cfg.sm_bonding = enabled;
}
void mp_bluetooth_set_mitm_protection(bool enabled) {
ble_hs_cfg.sm_mitm = enabled;
}
void mp_bluetooth_set_le_secure(bool enabled) {
ble_hs_cfg.sm_sc = enabled;
}
void mp_bluetooth_set_io_capability(uint8_t capability) {
ble_hs_cfg.sm_io_cap = capability;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
size_t mp_bluetooth_gap_get_device_name(const uint8_t **buf) {
const char *name = ble_svc_gap_device_name();
*buf = (const uint8_t *)name;
return strlen(name);
}
int mp_bluetooth_gap_set_device_name(const uint8_t *buf, size_t len) {
char tmp_buf[MYNEWT_VAL(BLE_SVC_GAP_DEVICE_NAME_MAX_LENGTH) + 1];
if (len + 1 > sizeof(tmp_buf)) {
return MP_EINVAL;
}
memcpy(tmp_buf, buf, len);
tmp_buf[len] = '\0';
return ble_hs_err_to_errno(ble_svc_gap_device_name_set(tmp_buf));
}
int mp_bluetooth_gap_advertise_start(bool connectable, int32_t interval_us, const uint8_t *adv_data, size_t adv_data_len, const uint8_t *sr_data, size_t sr_data_len) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
mp_bluetooth_gap_advertise_stop();
int ret;
if (adv_data) {
ret = ble_gap_adv_set_data(adv_data, adv_data_len);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
}
if (sr_data) {
ret = ble_gap_adv_rsp_set_data(sr_data, sr_data_len);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
}
struct ble_gap_adv_params adv_params = {
.conn_mode = connectable ? BLE_GAP_CONN_MODE_UND : BLE_GAP_CONN_MODE_NON,
.disc_mode = BLE_GAP_DISC_MODE_GEN,
.itvl_min = interval_us / BLE_HCI_ADV_ITVL, // convert to 625us units.
.itvl_max = interval_us / BLE_HCI_ADV_ITVL,
.channel_map = 7, // all 3 channels.
};
ret = ble_gap_adv_start(nimble_address_mode, NULL, BLE_HS_FOREVER, &adv_params, central_gap_event_cb, NULL);
if (ret == 0) {
return 0;
}
DEBUG_printf("ble_gap_adv_start: %d\n", ret);
return ble_hs_err_to_errno(ret);
}
void mp_bluetooth_gap_advertise_stop(void) {
if (ble_gap_adv_active()) {
ble_gap_adv_stop();
}
}
static int characteristic_access_cb(uint16_t conn_handle, uint16_t value_handle, struct ble_gatt_access_ctxt *ctxt, void *arg) {
DEBUG_printf("characteristic_access_cb: conn_handle=%u value_handle=%u op=%u\n", conn_handle, value_handle, ctxt->op);
if (!mp_bluetooth_is_active()) {
return 0;
}
mp_bluetooth_gatts_db_entry_t *entry;
switch (ctxt->op) {
case BLE_GATT_ACCESS_OP_READ_CHR:
case BLE_GATT_ACCESS_OP_READ_DSC: {
DEBUG_printf("write for %d %d (op=%d)\n", conn_handle, value_handle, ctxt->op);
// Allow Python code to override (by using gatts_write), or deny (by returning false) the read.
// Note this will be a no-op if the ringbuffer implementation is being used (i.e. the stack isn't
// run in the scheduler). The ringbuffer is not used on STM32 and Unix-H4 only.
int req = mp_bluetooth_gatts_on_read_request(conn_handle, value_handle);
if (req) {
return req;
}
entry = mp_bluetooth_gatts_db_lookup(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle);
if (!entry) {
return BLE_ATT_ERR_ATTR_NOT_FOUND;
}
if (os_mbuf_append(ctxt->om, entry->data, entry->data_len)) {
return BLE_ATT_ERR_INSUFFICIENT_RES;
}
return 0;
}
case BLE_GATT_ACCESS_OP_WRITE_CHR:
case BLE_GATT_ACCESS_OP_WRITE_DSC:
DEBUG_printf("write for %d %d (op=%d)\n", conn_handle, value_handle, ctxt->op);
entry = mp_bluetooth_gatts_db_lookup(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle);
if (!entry) {
return BLE_ATT_ERR_ATTR_NOT_FOUND;
}
size_t offset = 0;
if (entry->append) {
offset = entry->data_len;
}
entry->data_len = MIN(entry->data_alloc, OS_MBUF_PKTLEN(ctxt->om) + offset);
os_mbuf_copydata(ctxt->om, 0, entry->data_len - offset, entry->data + offset);
// TODO: Consider failing with BLE_ATT_ERR_INSUFFICIENT_RES if the buffer is full.
mp_bluetooth_gatts_on_write(conn_handle, value_handle);
return 0;
}
return BLE_ATT_ERR_UNLIKELY;
}
int mp_bluetooth_gatts_register_service_begin(bool append) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
if (append) {
// Don't support append yet (modbluetooth.c doesn't support it yet anyway).
// TODO: This should be possible with NimBLE.
return MP_EOPNOTSUPP;
}
nimble_reset_gatts_bss();
int ret = ble_gatts_reset();
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
// Reset the gatt characteristic value db.
mp_bluetooth_gatts_db_reset(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db);
// By default, just register the default gap/gatt service.
ble_svc_gap_init();
ble_svc_gatt_init();
// Unref any previous service definitions.
for (size_t i = 0; i < MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services; ++i) {
MP_STATE_PORT(bluetooth_nimble_root_pointers)->services[i] = NULL;
}
MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services = 0;
return 0;
}
2020-09-11 09:12:36 +01:00
int mp_bluetooth_gatts_register_service_end(void) {
int ret = ble_gatts_start();
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
return 0;
}
int mp_bluetooth_gatts_register_service(mp_obj_bluetooth_uuid_t *service_uuid, mp_obj_bluetooth_uuid_t **characteristic_uuids, uint16_t *characteristic_flags, mp_obj_bluetooth_uuid_t **descriptor_uuids, uint16_t *descriptor_flags, uint8_t *num_descriptors, uint16_t *handles, size_t num_characteristics) {
if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services == MP_BLUETOOTH_NIMBLE_MAX_SERVICES) {
return MP_E2BIG;
}
size_t handle_index = 0;
size_t descriptor_index = 0;
struct ble_gatt_chr_def *characteristics = m_new(struct ble_gatt_chr_def, num_characteristics + 1);
for (size_t i = 0; i < num_characteristics; ++i) {
characteristics[i].uuid = create_nimble_uuid(characteristic_uuids[i], NULL);
characteristics[i].access_cb = characteristic_access_cb;
characteristics[i].arg = NULL;
// NimBLE flags match the MP_BLUETOOTH_CHARACTERISTIC_FLAG_ ones exactly (including the security/privacy options).
characteristics[i].flags = characteristic_flags[i];
characteristics[i].min_key_size = 0;
characteristics[i].val_handle = &handles[handle_index];
++handle_index;
if (num_descriptors[i] == 0) {
characteristics[i].descriptors = NULL;
} else {
struct ble_gatt_dsc_def *descriptors = m_new(struct ble_gatt_dsc_def, num_descriptors[i] + 1);
for (size_t j = 0; j < num_descriptors[i]; ++j) {
descriptors[j].uuid = create_nimble_uuid(descriptor_uuids[descriptor_index], NULL);
descriptors[j].access_cb = characteristic_access_cb;
// NimBLE doesn't support security/privacy options on descriptors.
uint8_t desc_att_flags = 0;
if (descriptor_flags[descriptor_index] & MP_BLUETOOTH_CHARACTERISTIC_FLAG_READ) {
desc_att_flags |= BLE_ATT_F_READ;
}
if (descriptor_flags[descriptor_index] & (MP_BLUETOOTH_CHARACTERISTIC_FLAG_WRITE | MP_BLUETOOTH_CHARACTERISTIC_FLAG_WRITE_NO_RESPONSE)) {
desc_att_flags |= BLE_ATT_F_WRITE;
}
descriptors[j].att_flags = desc_att_flags;
descriptors[j].min_key_size = 0;
// Unlike characteristic, Nimble doesn't provide an automatic way to remember the handle, so use the arg.
descriptors[j].arg = &handles[handle_index];
++descriptor_index;
++handle_index;
}
descriptors[num_descriptors[i]].uuid = NULL; // no more descriptors
characteristics[i].descriptors = descriptors;
}
}
characteristics[num_characteristics].uuid = NULL; // no more characteristics
struct ble_gatt_svc_def *service = m_new(struct ble_gatt_svc_def, 2);
service[0].type = BLE_GATT_SVC_TYPE_PRIMARY;
service[0].uuid = create_nimble_uuid(service_uuid, NULL);
service[0].includes = NULL;
service[0].characteristics = characteristics;
service[1].type = 0; // no more services
MP_STATE_PORT(bluetooth_nimble_root_pointers)->services[MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services++] = service;
// Note: advertising must be stopped for gatts registration to work
int ret = ble_gatts_count_cfg(service);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
ret = ble_gatts_add_svcs(service);
if (ret != 0) {
return ble_hs_err_to_errno(ret);
}
return 0;
}
int mp_bluetooth_gap_disconnect(uint16_t conn_handle) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
return ble_hs_err_to_errno(ble_gap_terminate(conn_handle, BLE_ERR_REM_USER_CONN_TERM));
}
int mp_bluetooth_gatts_read(uint16_t value_handle, const uint8_t **value, size_t *value_len) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
return mp_bluetooth_gatts_db_read(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, value, value_len);
}
int mp_bluetooth_gatts_write(uint16_t value_handle, const uint8_t *value, size_t value_len, bool send_update) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err = mp_bluetooth_gatts_db_write(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, value, value_len);
if (err == 0 && send_update) {
ble_gatts_chr_updated(value_handle);
}
return err;
}
int mp_bluetooth_gatts_notify_indicate(uint16_t conn_handle, uint16_t value_handle, int gatts_op, const uint8_t *value, size_t value_len) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err = BLE_HS_EINVAL;
// NULL om in the _custom methods means "use DB value" (NimBLE will call
// back into mp_bluetooth_gatts_read for us).
struct os_mbuf *om = NULL;
if (value) {
om = ble_hs_mbuf_from_flat(value, value_len);
if (om == NULL) {
return MP_ENOMEM;
}
}
// Note: Confusingly, Nimble's notify/notify_custom and indicate/indicate_custom
// are "gattc" functions (even though they're used by peripherals, i.e. gatt servers).
// See https://www.mail-archive.com/dev@mynewt.apache.org/msg01293.html
switch (gatts_op) {
case MP_BLUETOOTH_GATTS_OP_NOTIFY:
err = ble_gattc_notify_custom(conn_handle, value_handle, om);
break;
case MP_BLUETOOTH_GATTS_OP_INDICATE:
// This will raise BLE_GAP_EVENT_NOTIFY_TX with a status when it is
// acknowledged (or timeout/error).
err = ble_gattc_indicate_custom(conn_handle, value_handle, om);
break;
}
return ble_hs_err_to_errno(err);
}
int mp_bluetooth_gatts_set_buffer(uint16_t value_handle, size_t len, bool append) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
return mp_bluetooth_gatts_db_resize(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, len, append);
}
2020-09-11 09:12:36 +01:00
int mp_bluetooth_get_preferred_mtu(void) {
if (!mp_bluetooth_is_active()) {
mp_raise_OSError(ERRNO_BLUETOOTH_NOT_ACTIVE);
}
return ble_att_preferred_mtu();
}
int mp_bluetooth_set_preferred_mtu(uint16_t mtu) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
if (ble_att_set_preferred_mtu(mtu)) {
return MP_EINVAL;
}
return 0;
}
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
int mp_bluetooth_gap_pair(uint16_t conn_handle) {
DEBUG_printf("mp_bluetooth_gap_pair: conn_handle=%d\n", conn_handle);
return ble_hs_err_to_errno(ble_gap_security_initiate(conn_handle));
}
int mp_bluetooth_gap_passkey(uint16_t conn_handle, uint8_t action, mp_int_t passkey) {
struct ble_sm_io io = {0};
switch (action) {
case MP_BLUETOOTH_PASSKEY_ACTION_INPUT: {
io.passkey = passkey;
break;
}
case MP_BLUETOOTH_PASSKEY_ACTION_DISPLAY: {
io.passkey = passkey;
break;
}
case MP_BLUETOOTH_PASSKEY_ACTION_NUMERIC_COMPARISON: {
io.numcmp_accept = passkey != 0;
break;
}
default: {
return MP_EINVAL;
}
}
io.action = action;
DEBUG_printf("mp_bluetooth_gap_passkey: injecting IO: conn_handle=%d, action=%d, passkey=" UINT_FMT ", numcmp_accept=%d\n", conn_handle, io.action, (mp_uint_t)io.passkey, io.numcmp_accept);
return ble_hs_err_to_errno(ble_sm_inject_io(conn_handle, &io));
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
STATIC int gap_scan_cb(struct ble_gap_event *event, void *arg) {
DEBUG_printf("gap_scan_cb: event=%d type=%d\n", event->type, event->type == BLE_GAP_EVENT_DISC ? event->disc.event_type : -1);
if (!mp_bluetooth_is_active()) {
return 0;
}
if (event->type == BLE_GAP_EVENT_DISC_COMPLETE) {
mp_bluetooth_gap_on_scan_complete();
return 0;
}
if (event->type != BLE_GAP_EVENT_DISC) {
return 0;
}
uint8_t addr[6];
reverse_addr_byte_order(addr, event->disc.addr.val);
mp_bluetooth_gap_on_scan_result(event->disc.addr.type, addr, event->disc.event_type, event->disc.rssi, event->disc.data, event->disc.length_data);
return 0;
}
int mp_bluetooth_gap_scan_start(int32_t duration_ms, int32_t interval_us, int32_t window_us, bool active_scan) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
if (duration_ms == 0) {
duration_ms = BLE_HS_FOREVER;
}
struct ble_gap_disc_params discover_params = {
.itvl = MAX(BLE_HCI_SCAN_ITVL_MIN, MIN(BLE_HCI_SCAN_ITVL_MAX, interval_us / BLE_HCI_SCAN_ITVL)),
.window = MAX(BLE_HCI_SCAN_WINDOW_MIN, MIN(BLE_HCI_SCAN_WINDOW_MAX, window_us / BLE_HCI_SCAN_ITVL)),
.filter_policy = BLE_HCI_CONN_FILT_NO_WL,
.limited = 0,
.passive = active_scan ? 0 : 1,
.filter_duplicates = 0,
};
int err = ble_gap_disc(nimble_address_mode, duration_ms, &discover_params, gap_scan_cb, NULL);
return ble_hs_err_to_errno(err);
}
int mp_bluetooth_gap_scan_stop(void) {
DEBUG_printf("mp_bluetooth_gap_scan_stop\n");
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
if (!ble_gap_disc_active()) {
return 0;
}
int err = ble_gap_disc_cancel();
if (err == 0) {
mp_bluetooth_gap_on_scan_complete();
return 0;
}
return ble_hs_err_to_errno(err);
}
// Central role: GAP events for a connected peripheral.
STATIC int peripheral_gap_event_cb(struct ble_gap_event *event, void *arg) {
DEBUG_printf("peripheral_gap_event_cb: event=%d\n", event->type);
if (!mp_bluetooth_is_active()) {
return 0;
}
struct ble_gap_conn_desc desc;
uint8_t addr[6] = {0};
switch (event->type) {
case BLE_GAP_EVENT_CONNECT:
DEBUG_printf("peripheral_gap_event_cb: status=%d\n", event->connect.status);
if (event->connect.status == 0) {
// Connection established.
ble_gap_conn_find(event->connect.conn_handle, &desc);
reverse_addr_byte_order(addr, desc.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
} else {
// Connection failed.
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
}
return 0;
case BLE_GAP_EVENT_DISCONNECT:
// Disconnect.
DEBUG_printf("peripheral_gap_event_cb: reason=%d\n", event->disconnect.reason);
reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
return 0;
}
return commmon_gap_event_cb(event, arg);
}
int mp_bluetooth_gap_peripheral_connect(uint8_t addr_type, const uint8_t *addr, int32_t duration_ms, int32_t min_conn_interval_us, int32_t max_conn_interval_us) {
DEBUG_printf("mp_bluetooth_gap_peripheral_connect\n");
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
if (ble_gap_disc_active()) {
mp_bluetooth_gap_scan_stop();
}
uint16_t conn_interval_min = min_conn_interval_us ? min_conn_interval_us / BLE_HCI_CONN_ITVL : BLE_GAP_INITIAL_CONN_ITVL_MIN;
uint16_t conn_interval_max = max_conn_interval_us ? max_conn_interval_us / BLE_HCI_CONN_ITVL : BLE_GAP_INITIAL_CONN_ITVL_MAX;
const struct ble_gap_conn_params params = {
.scan_itvl = 0x0010,
.scan_window = 0x0010,
.itvl_min = conn_interval_min,
.itvl_max = conn_interval_max,
.latency = BLE_GAP_INITIAL_CONN_LATENCY,
.supervision_timeout = BLE_GAP_INITIAL_SUPERVISION_TIMEOUT,
.min_ce_len = BLE_GAP_INITIAL_CONN_MIN_CE_LEN,
.max_ce_len = BLE_GAP_INITIAL_CONN_MAX_CE_LEN,
};
ble_addr_t addr_nimble = create_nimble_addr(addr_type, addr);
int err = ble_gap_connect(nimble_address_mode, &addr_nimble, duration_ms, &params, &peripheral_gap_event_cb, NULL);
return ble_hs_err_to_errno(err);
}
int mp_bluetooth_gap_peripheral_connect_cancel(void) {
DEBUG_printf("mp_bluetooth_gap_peripheral_connect_cancel\n");
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err = ble_gap_conn_cancel();
return ble_hs_err_to_errno(err);
}
STATIC int ble_gattc_service_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_svc *service, void *arg) {
DEBUG_printf("ble_gattc_service_cb: conn_handle=%d status=%d start_handle=%d\n", conn_handle, error->status, service ? service->start_handle : -1);
if (!mp_bluetooth_is_active()) {
return 0;
}
if (error->status == 0) {
mp_obj_bluetooth_uuid_t service_uuid = create_mp_uuid(&service->uuid);
mp_bluetooth_gattc_on_primary_service_result(conn_handle, service->start_handle, service->end_handle, &service_uuid);
} else {
mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_SERVICE_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
}
return 0;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
#if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
STATIC void gattc_on_data_available(uint8_t event, uint16_t conn_handle, uint16_t value_handle, const struct os_mbuf *om) {
// When the HCI data for an ATT payload arrives, the L2CAP channel will
// buffer it into its receive buffer. We set BLE_L2CAP_JOIN_RX_FRAGS=1 in
// syscfg.h so it should be rare that the mbuf is fragmented, but we do need
// to be able to handle it. We pass all the fragments up to modbluetooth.c
// which will create a temporary buffer on the MicroPython heap if necessary
// to re-assemble them.
// Count how many links are in the mbuf chain.
size_t n = 0;
const struct os_mbuf *elem = om;
while (elem) {
n += 1;
elem = SLIST_NEXT(elem, om_next);
}
// Grab data pointers and lengths for each of the links.
const uint8_t **data = mp_local_alloc(sizeof(uint8_t *) * n);
uint16_t *data_len = mp_local_alloc(sizeof(uint16_t) * n);
for (size_t i = 0; i < n; ++i) {
data[i] = OS_MBUF_DATA(om, const uint8_t *);
data_len[i] = om->om_len;
om = SLIST_NEXT(om, om_next);
}
// Pass all the fragments together.
mp_bluetooth_gattc_on_data_available(event, conn_handle, value_handle, data, data_len, n);
mp_local_free(data_len);
mp_local_free(data);
}
int mp_bluetooth_gattc_discover_primary_services(uint16_t conn_handle, const mp_obj_bluetooth_uuid_t *uuid) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err;
if (uuid) {
ble_uuid_any_t nimble_uuid;
create_nimble_uuid(uuid, &nimble_uuid);
err = ble_gattc_disc_svc_by_uuid(conn_handle, &nimble_uuid.u, &ble_gattc_service_cb, NULL);
} else {
err = ble_gattc_disc_all_svcs(conn_handle, &ble_gattc_service_cb, NULL);
}
return ble_hs_err_to_errno(err);
}
STATIC bool match_char_uuid(const mp_obj_bluetooth_uuid_t *filter_uuid, const ble_uuid_any_t *result_uuid) {
if (!filter_uuid) {
return true;
}
ble_uuid_any_t filter_uuid_nimble;
create_nimble_uuid(filter_uuid, &filter_uuid_nimble);
return ble_uuid_cmp(&result_uuid->u, &filter_uuid_nimble.u) == 0;
}
STATIC int ble_gattc_characteristic_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_chr *characteristic, void *arg) {
DEBUG_printf("ble_gattc_characteristic_cb: conn_handle=%d status=%d def_handle=%d val_handle=%d\n", conn_handle, error->status, characteristic ? characteristic->def_handle : -1, characteristic ? characteristic->val_handle : -1);
if (!mp_bluetooth_is_active()) {
return 0;
}
mp_bluetooth_nimble_pending_characteristic_t *pending = &MP_STATE_PORT(bluetooth_nimble_root_pointers)->pending_char_result;
if (pending->ready) {
// If there's a pending characteristic, we now know what it's end handle is, report it up to modbluetooth.
pending->ready = 0;
// The end handle will either be the end of the query range (there are
// no more results), or one before the current result's definition
// handle.
uint16_t end_handle = MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle;
if (error->status == 0) {
end_handle = characteristic->def_handle - 1;
}
// Assume same conn_handle because we're limiting to a single active discovery.
mp_bluetooth_gattc_on_characteristic_result(conn_handle, pending->value_handle, end_handle, pending->properties, &pending->uuid);
}
if (error->status == 0) {
// If there's no filter, or the filter matches, then save this result.
if (match_char_uuid(MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_filter_uuid, &characteristic->uuid)) {
pending->value_handle = characteristic->val_handle;
pending->properties = characteristic->properties;
pending->uuid = create_mp_uuid(&characteristic->uuid);
pending->ready = 1;
}
} else {
// Finished (or failed). Allow another characteristic discovery to start.
MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle = 0;
// Report completion.
mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_CHARACTERISTIC_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
}
return 0;
}
int mp_bluetooth_gattc_discover_characteristics(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle, const mp_obj_bluetooth_uuid_t *uuid) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
// The implementation of characteristic discovery queries for all
// characteristics, and then UUID filtering is applied by NimBLE on each
// characteristic. Unfortunately, each characteristic result does not
// include its end handle, so you need to know the next characteristic
// before you can raise the previous one to modbluetooth. But if we let
// NimBLE do the filtering, then we don't necessarily see the next one.
// So we make NimBLE return all results and do the filtering here instead.
if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle) {
// Only allow a single discovery (otherwise we'd need to track a
// pending characteristic per conn handle).
return MP_EBUSY;
}
// Set the uuid filter (if any). This needs to be a root pointer,
// otherwise we'd use ble_gattc_disc_all_chrs's arg param.
MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_filter_uuid = uuid;
int err = ble_gattc_disc_all_chrs(conn_handle, start_handle, end_handle, &ble_gattc_characteristic_cb, NULL);
if (!err) {
// Lock out concurrent characteristic discovery.
MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle = end_handle;
}
return ble_hs_err_to_errno(err);
}
STATIC int ble_gattc_descriptor_cb(uint16_t conn_handle, const struct ble_gatt_error *error, uint16_t characteristic_val_handle, const struct ble_gatt_dsc *descriptor, void *arg) {
DEBUG_printf("ble_gattc_descriptor_cb: conn_handle=%d status=%d chr_handle=%d dsc_handle=%d\n", conn_handle, error->status, characteristic_val_handle, descriptor ? descriptor->handle : -1);
if (!mp_bluetooth_is_active()) {
return 0;
}
if (error->status == 0) {
mp_obj_bluetooth_uuid_t descriptor_uuid = create_mp_uuid(&descriptor->uuid);
mp_bluetooth_gattc_on_descriptor_result(conn_handle, descriptor->handle, &descriptor_uuid);
} else {
mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_DESCRIPTOR_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
}
return 0;
}
int mp_bluetooth_gattc_discover_descriptors(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err = ble_gattc_disc_all_dscs(conn_handle, start_handle, end_handle, &ble_gattc_descriptor_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gattc_attr_read_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
uint16_t handle = attr ? attr->handle : (error ? error->att_handle : 0xffff);
DEBUG_printf("ble_gattc_attr_read_cb: conn_handle=%d status=%d handle=%d\n", conn_handle, error->status, handle);
if (!mp_bluetooth_is_active()) {
return 0;
}
if (error->status == 0) {
gattc_on_data_available(MP_BLUETOOTH_IRQ_GATTC_READ_RESULT, conn_handle, attr->handle, attr->om);
}
mp_bluetooth_gattc_on_read_write_status(MP_BLUETOOTH_IRQ_GATTC_READ_DONE, conn_handle, handle, error->status);
return 0;
}
// Initiate read of a value from the remote peripheral.
int mp_bluetooth_gattc_read(uint16_t conn_handle, uint16_t value_handle) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err = ble_gattc_read(conn_handle, value_handle, &ble_gattc_attr_read_cb, NULL);
return ble_hs_err_to_errno(err);
}
STATIC int ble_gattc_attr_write_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
uint16_t handle = attr ? attr->handle : (error ? error->att_handle : 0xffff);
DEBUG_printf("ble_gattc_attr_write_cb: conn_handle=%d status=%d handle=%d\n", conn_handle, error->status, handle);
if (!mp_bluetooth_is_active()) {
return 0;
}
mp_bluetooth_gattc_on_read_write_status(MP_BLUETOOTH_IRQ_GATTC_WRITE_DONE, conn_handle, handle, error->status);
return 0;
}
// Write the value to the remote peripheral.
int mp_bluetooth_gattc_write(uint16_t conn_handle, uint16_t value_handle, const uint8_t *value, size_t value_len, unsigned int mode) {
if (!mp_bluetooth_is_active()) {
return ERRNO_BLUETOOTH_NOT_ACTIVE;
}
int err;
if (mode == MP_BLUETOOTH_WRITE_MODE_NO_RESPONSE) {
err = ble_gattc_write_no_rsp_flat(conn_handle, value_handle, value, value_len);
} else if (mode == MP_BLUETOOTH_WRITE_MODE_WITH_RESPONSE) {
err = ble_gattc_write_flat(conn_handle, value_handle, value, value_len, &ble_gattc_attr_write_cb, NULL);
} else {
err = BLE_HS_EINVAL;
}
return ble_hs_err_to_errno(err);
}
2020-09-11 09:12:36 +01:00
int mp_bluetooth_gattc_exchange_mtu(uint16_t conn_handle) {
DEBUG_printf("mp_bluetooth_exchange_mtu: conn_handle=%d mtu=%d\n", conn_handle, ble_att_preferred_mtu());
// Using NULL callback (we'll get notified in gap_event_cb instead).
return ble_hs_err_to_errno(ble_gattc_exchange_mtu(conn_handle, NULL, NULL));
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
STATIC void unstall_l2cap_channel(void);
#endif
void mp_bluetooth_nimble_sent_hci_packet(void) {
#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
if (os_msys_num_free() >= os_msys_count() * 3 / 4) {
unstall_l2cap_channel();
}
#endif
}
#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
// Fortunately NimBLE uses mbuf chains correctly with L2CAP COC (rather than
// accessing the mbuf internals directly), so we can use a small block size to
// avoid excessive fragmentation and rely on them chaining together for larger
// payloads.
#define L2CAP_BUF_BLOCK_SIZE (128)
// This gives us enough room to have one MTU-size transmit buffer and two
// MTU-sized receive buffers. Note that we use the local MTU to calculate
// the buffer size. This means that if the peer MTU is larger, then
// there might not be enough space in the pool to send a full peer-MTU
// sized payload and mp_bluetooth_l2cap_send will return ENOMEM.
#define L2CAP_BUF_SIZE_MTUS_PER_CHANNEL (3)
typedef struct _mp_bluetooth_nimble_l2cap_channel_t {
struct ble_l2cap_chan *chan;
struct os_mbuf_pool sdu_mbuf_pool;
struct os_mempool sdu_mempool;
struct os_mbuf *rx_pending;
bool irq_in_progress;
bool mem_stalled;
uint16_t mtu;
os_membuf_t sdu_mem[];
} mp_bluetooth_nimble_l2cap_channel_t;
STATIC void destroy_l2cap_channel();
STATIC int l2cap_channel_event(struct ble_l2cap_event *event, void *arg);
STATIC mp_bluetooth_nimble_l2cap_channel_t *get_l2cap_channel_for_conn_cid(uint16_t conn_handle, uint16_t cid);
STATIC int create_l2cap_channel(uint16_t mtu, mp_bluetooth_nimble_l2cap_channel_t **out);
STATIC void destroy_l2cap_channel() {
// Only free the l2cap channel if we're the one that initiated the connection.
// Listeners continue listening on the same channel.
if (!MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_listening) {
MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan = NULL;
}
}
STATIC void unstall_l2cap_channel(void) {
// Whenever we send an HCI packet and the sys mempool is now less than 1/4 full,
// we can un-stall the L2CAP channel if it was marked as "mem_stalled" by
// mp_bluetooth_l2cap_send. (This happens if the pool is half-empty).
mp_bluetooth_nimble_l2cap_channel_t *chan = MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan;
if (!chan || !chan->mem_stalled) {
return;
}
DEBUG_printf("unstall_l2cap_channel: count %d, free: %d\n", os_msys_count(), os_msys_num_free());
chan->mem_stalled = false;
mp_bluetooth_on_l2cap_send_ready(chan->chan->conn_handle, chan->chan->scid, 0);
}
STATIC int l2cap_channel_event(struct ble_l2cap_event *event, void *arg) {
DEBUG_printf("l2cap_channel_event: type=%d\n", event->type);
mp_bluetooth_nimble_l2cap_channel_t *chan = (mp_bluetooth_nimble_l2cap_channel_t *)arg;
struct ble_l2cap_chan_info info;
switch (event->type) {
case BLE_L2CAP_EVENT_COC_CONNECTED: {
DEBUG_printf("l2cap_channel_event: connect: conn_handle=%d status=%d\n", event->connect.conn_handle, event->connect.status);
chan->chan = event->connect.chan;
ble_l2cap_get_chan_info(event->connect.chan, &info);
if (event->connect.status == 0) {
mp_bluetooth_on_l2cap_connect(event->connect.conn_handle, info.scid, info.psm, info.our_coc_mtu, info.peer_coc_mtu);
} else {
mp_bluetooth_on_l2cap_disconnect(event->connect.conn_handle, info.scid, info.psm, event->connect.status);
destroy_l2cap_channel();
}
break;
}
case BLE_L2CAP_EVENT_COC_DISCONNECTED: {
DEBUG_printf("l2cap_channel_event: disconnect: conn_handle=%d\n", event->disconnect.conn_handle);
ble_l2cap_get_chan_info(event->disconnect.chan, &info);
mp_bluetooth_on_l2cap_disconnect(event->disconnect.conn_handle, info.scid, info.psm, 0);
destroy_l2cap_channel();
break;
}
case BLE_L2CAP_EVENT_COC_ACCEPT: {
DEBUG_printf("l2cap_channel_event: accept: conn_handle=%d peer_sdu_size=%d\n", event->accept.conn_handle, event->accept.peer_sdu_size);
chan->chan = event->accept.chan;
ble_l2cap_get_chan_info(event->accept.chan, &info);
int ret = mp_bluetooth_on_l2cap_accept(event->accept.conn_handle, info.scid, info.psm, info.our_coc_mtu, info.peer_coc_mtu);
if (ret != 0) {
return ret;
}
struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
assert(sdu_rx);
return ble_l2cap_recv_ready(chan->chan, sdu_rx);
}
case BLE_L2CAP_EVENT_COC_DATA_RECEIVED: {
DEBUG_printf("l2cap_channel_event: receive: conn_handle=%d len=%d\n", event->receive.conn_handle, OS_MBUF_PKTLEN(event->receive.sdu_rx));
if (chan->rx_pending) {
// Ideally this doesn't happen, as the sender should not get
// any more credits to send more data until we call
// ble_l2cap_recv_ready. However there might be multiple
// in-flight packets if the sender was able to send more than
// one before stalling.
DEBUG_printf("l2cap_channel_event: receive: appending to rx pending\n");
// Note: os_mbuf_concat will just join the two together, so
// sdu_rx is now "owned" by rx_pending.
os_mbuf_concat(chan->rx_pending, event->receive.sdu_rx);
} else {
// Normal case is when the first payload arrives since calling
// ble_l2cap_recv_ready.
DEBUG_printf("l2cap_event: receive: new payload\n");
// Take ownership of sdu_rx.
chan->rx_pending = event->receive.sdu_rx;
}
struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
assert(sdu_rx);
// ble_l2cap_coc_rx_fn invokes this event handler when a complete payload arrives.
// However, it NULLs chan->chan->coc_rx.sdu before doing so, expecting that
// ble_l2cap_recv_ready will be called to give it a new mbuf.
// This means that if another payload arrives before we call ble_l2cap_recv_ready
// then ble_l2cap_coc_rx_fn will NULL-deref coc_rx.sdu.
// Because we're not yet ready to grant new credits to the channel, we can't call
// ble_l2cap_recv_ready yet, so instead we just give it a new mbuf. This requires
// ble_l2cap_priv.h for the definition of chan->chan (i.e. struct ble_l2cap_chan).
chan->chan->coc_rx.sdu = sdu_rx;
ble_l2cap_get_chan_info(event->receive.chan, &info);
// Don't allow granting more credits until after the IRQ is handled.
chan->irq_in_progress = true;
mp_bluetooth_on_l2cap_recv(event->receive.conn_handle, info.scid);
chan->irq_in_progress = false;
// If all data has been consumed by the IRQ handler, then now allow
// more credits. If the IRQ handler doesn't consume all available data
// then rx_pending will be still set.
if (!chan->rx_pending) {
struct os_mbuf *sdu_rx = chan->chan->coc_rx.sdu;
assert(sdu_rx);
if (sdu_rx) {
ble_l2cap_recv_ready(chan->chan, sdu_rx);
}
}
break;
}
case BLE_L2CAP_EVENT_COC_TX_UNSTALLED: {
DEBUG_printf("l2cap_channel_event: tx_unstalled: conn_handle=%d status=%d\n", event->tx_unstalled.conn_handle, event->tx_unstalled.status);
assert(event->tx_unstalled.conn_handle == chan->chan->conn_handle);
// Don't un-stall if we're still waiting for room in the sys pool.
if (!chan->mem_stalled) {
ble_l2cap_get_chan_info(event->receive.chan, &info);
// Map status to {0,1} (i.e. "sent everything", or "partial send").
mp_bluetooth_on_l2cap_send_ready(event->tx_unstalled.conn_handle, info.scid, event->tx_unstalled.status == 0 ? 0 : 1);
}
break;
}
case BLE_L2CAP_EVENT_COC_RECONFIG_COMPLETED: {
DEBUG_printf("l2cap_channel_event: reconfig_completed: conn_handle=%d\n", event->reconfigured.conn_handle);
break;
}
case BLE_L2CAP_EVENT_COC_PEER_RECONFIGURED: {
DEBUG_printf("l2cap_channel_event: peer_reconfigured: conn_handle=%d\n", event->reconfigured.conn_handle);
break;
}
default: {
DEBUG_printf("l2cap_channel_event: unknown event\n");
break;
}
}
return 0;
}
STATIC mp_bluetooth_nimble_l2cap_channel_t *get_l2cap_channel_for_conn_cid(uint16_t conn_handle, uint16_t cid) {
// TODO: Support more than one concurrent L2CAP channel. At the moment we
// just verify that the cid refers to the current channel.
mp_bluetooth_nimble_l2cap_channel_t *chan = MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan;
if (!chan) {
return NULL;
}
struct ble_l2cap_chan_info info;
ble_l2cap_get_chan_info(chan->chan, &info);
if (info.scid != cid || ble_l2cap_get_conn_handle(chan->chan) != conn_handle) {
return NULL;
}
return chan;
}
STATIC int create_l2cap_channel(uint16_t mtu, mp_bluetooth_nimble_l2cap_channel_t **out) {
if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan) {
// Only one L2CAP channel allowed.
// Additionally, if we're listening, then no connections may be initiated.
DEBUG_printf("create_l2cap_channel: channel already in use\n");
return MP_EALREADY;
}
// We want the TX and RX buffers to share a pool that is some multiple of
// the MTU size. Figure out how many blocks per MTU (rounding up), then
// multiply that by the "MTUs per channel" (set to 3 above).
const size_t buf_blocks = MP_CEIL_DIVIDE(mtu, L2CAP_BUF_BLOCK_SIZE) * L2CAP_BUF_SIZE_MTUS_PER_CHANNEL;
mp_bluetooth_nimble_l2cap_channel_t *chan = m_new_obj_var(mp_bluetooth_nimble_l2cap_channel_t, sdu_mem, uint8_t, OS_MEMPOOL_SIZE(buf_blocks, L2CAP_BUF_BLOCK_SIZE) * sizeof(os_membuf_t));
MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan = chan;
// Will be set in BLE_L2CAP_EVENT_COC_CONNECTED or BLE_L2CAP_EVENT_COC_ACCEPT.
chan->chan = NULL;
chan->mtu = mtu;
chan->rx_pending = NULL;
chan->irq_in_progress = false;
int err = os_mempool_init(&chan->sdu_mempool, buf_blocks, L2CAP_BUF_BLOCK_SIZE, chan->sdu_mem, "l2cap_sdu_pool");
if (err != 0) {
DEBUG_printf("mp_bluetooth_l2cap_connect: os_mempool_init failed %d\n", err);
return MP_ENOMEM;
}
err = os_mbuf_pool_init(&chan->sdu_mbuf_pool, &chan->sdu_mempool, L2CAP_BUF_BLOCK_SIZE, buf_blocks);
if (err != 0) {
DEBUG_printf("mp_bluetooth_l2cap_connect: os_mbuf_pool_init failed %d\n", err);
return MP_ENOMEM;
}
*out = chan;
return 0;
}
int mp_bluetooth_l2cap_listen(uint16_t psm, uint16_t mtu) {
DEBUG_printf("mp_bluetooth_l2cap_listen: psm=%d, mtu=%d\n", psm, mtu);
mp_bluetooth_nimble_l2cap_channel_t *chan;
int err = create_l2cap_channel(mtu, &chan);
if (err != 0) {
return err;
}
MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_listening = true;
return ble_hs_err_to_errno(ble_l2cap_create_server(psm, mtu, &l2cap_channel_event, chan));
}
int mp_bluetooth_l2cap_connect(uint16_t conn_handle, uint16_t psm, uint16_t mtu) {
DEBUG_printf("mp_bluetooth_l2cap_connect: conn_handle=%d, psm=%d, mtu=%d\n", conn_handle, psm, mtu);
mp_bluetooth_nimble_l2cap_channel_t *chan;
int err = create_l2cap_channel(mtu, &chan);
if (err != 0) {
return err;
}
struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
assert(sdu_rx);
return ble_hs_err_to_errno(ble_l2cap_connect(conn_handle, psm, mtu, sdu_rx, &l2cap_channel_event, chan));
}
int mp_bluetooth_l2cap_disconnect(uint16_t conn_handle, uint16_t cid) {
DEBUG_printf("mp_bluetooth_l2cap_disconnect: conn_handle=%d, cid=%d\n", conn_handle, cid);
mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
if (!chan) {
return MP_EINVAL;
}
return ble_hs_err_to_errno(ble_l2cap_disconnect(chan->chan));
}
int mp_bluetooth_l2cap_send(uint16_t conn_handle, uint16_t cid, const uint8_t *buf, size_t len, bool *stalled) {
DEBUG_printf("mp_bluetooth_l2cap_send: conn_handle=%d, cid=%d, len=%d\n", conn_handle, cid, (int)len);
mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
if (!chan) {
return MP_EINVAL;
}
struct ble_l2cap_chan_info info;
ble_l2cap_get_chan_info(chan->chan, &info);
if (len > info.peer_coc_mtu) {
// This is verified by ble_l2cap_send anyway, but this lets us
// avoid copying a too-large buffer into an mbuf.
return MP_EINVAL;
}
if (len > (L2CAP_BUF_SIZE_MTUS_PER_CHANNEL - 1) * info.our_coc_mtu) {
// Always ensure there's at least one local MTU of space left in the buffer
// for the RX buffer.
return MP_EINVAL;
}
// Grab an mbuf from the pool, and append the incoming buffer to it.
struct os_mbuf *sdu_tx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
if (sdu_tx == NULL) {
return MP_ENOMEM;
}
int err = os_mbuf_append(sdu_tx, buf, len);
if (err) {
os_mbuf_free_chain(sdu_tx);
return MP_ENOMEM;
}
*stalled = false;
err = ble_l2cap_send(chan->chan, sdu_tx);
if (err == BLE_HS_ESTALLED) {
// Stalled means that this one will still send but any future ones
// will fail until we receive an un-stalled event.
DEBUG_printf("mp_bluetooth_l2cap_send: credit stall\n");
*stalled = true;
err = 0;
} else {
if (err) {
// Anything except stalled means it won't attempt to send,
// so free the mbuf (we're failing the op entirely).
os_mbuf_free_chain(sdu_tx);
}
}
if (os_msys_num_free() <= os_msys_count() / 2) {
// If the sys mempool is less than half-full, then back off sending more
// on this channel.
DEBUG_printf("mp_bluetooth_l2cap_send: forcing mem stall: count %d, free: %d\n", os_msys_count(), os_msys_num_free());
chan->mem_stalled = true;
*stalled = true;
}
// Other error codes such as BLE_HS_EBUSY (we're stalled) or BLE_HS_EBADDATA (bigger than MTU).
return ble_hs_err_to_errno(err);
}
int mp_bluetooth_l2cap_recvinto(uint16_t conn_handle, uint16_t cid, uint8_t *buf, size_t *len) {
mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
if (!chan) {
return MP_EINVAL;
}
MICROPY_PY_BLUETOOTH_ENTER
if (chan->rx_pending) {
size_t avail = OS_MBUF_PKTLEN(chan->rx_pending);
if (buf == NULL) {
// Can use this to implement a poll - just find out how much is available.
*len = avail;
} else {
// Have dest buffer and data available.
// Figure out how much we should copy.
*len = min(*len, avail);
// Extract the required number of bytes.
os_mbuf_copydata(chan->rx_pending, 0, *len, buf);
if (*len == avail) {
// That's all that's available -- free this mbuf and re-enable receiving.
os_mbuf_free_chain(chan->rx_pending);
chan->rx_pending = NULL;
// If we're in the call stack of the l2cap_channel_event handler, then don't
// re-enable receiving yet (as we need to complete the rest of IRQ handler first).
if (!chan->irq_in_progress) {
// We've already given the channel a new mbuf in l2cap_channel_event above, so
// reuse that mbuf in the call to ble_l2cap_recv_ready. This will just
// give the channel more credits.
struct os_mbuf *sdu_rx = chan->chan->coc_rx.sdu;
assert(sdu_rx);
if (sdu_rx) {
ble_l2cap_recv_ready(chan->chan, sdu_rx);
}
}
} else {
// Trim the used bytes from the start of the mbuf.
// Positive argument means "trim this many from head".
os_mbuf_adj(chan->rx_pending, *len);
// Clean up any empty mbufs at the head.
chan->rx_pending = os_mbuf_trim_front(chan->rx_pending);
}
}
} else {
// No pending data.
*len = 0;
}
MICROPY_PY_BLUETOOTH_EXIT
return 0;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
#if MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD
int mp_bluetooth_hci_cmd(uint16_t ogf, uint16_t ocf, const uint8_t *req, size_t req_len, uint8_t *resp, size_t resp_len, uint8_t *status) {
int rc = ble_hs_hci_cmd_tx(BLE_HCI_OP(ogf, ocf), req, req_len, resp, resp_len);
if (rc < BLE_HS_ERR_HCI_BASE || rc >= BLE_HS_ERR_HCI_BASE + 0x100) {
// The controller didn't handle the command (e.g. HCI timeout).
return ble_hs_err_to_errno(rc);
} else {
// The command executed, but had an error (i.e. invalid parameter).
*status = rc - BLE_HS_ERR_HCI_BASE;
return 0;
}
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD
#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
STATIC int ble_secret_store_read(int obj_type, const union ble_store_key *key, union ble_store_value *value) {
DEBUG_printf("ble_secret_store_read: %d\n", obj_type);
const uint8_t *key_data;
size_t key_data_len;
switch (obj_type) {
case BLE_STORE_OBJ_TYPE_PEER_SEC: {
if (ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)) {
// <type=peer,addr,*> (single)
// Find the entry for this specific peer.
assert(key->sec.idx == 0);
assert(!key->sec.ediv_rand_present);
key_data = (const uint8_t *)&key->sec.peer_addr;
key_data_len = sizeof(ble_addr_t);
} else {
// <type=peer,*> (with index)
// Iterate all known peers.
assert(!key->sec.ediv_rand_present);
key_data = NULL;
key_data_len = 0;
}
break;
}
case BLE_STORE_OBJ_TYPE_OUR_SEC: {
// <type=our,addr,ediv_rand>
// Find our secret for this remote device, matching this ediv/rand key.
assert(ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
assert(key->sec.idx == 0);
assert(key->sec.ediv_rand_present);
key_data = (const uint8_t *)&key->sec.peer_addr;
key_data_len = sizeof(ble_addr_t);
break;
}
case BLE_STORE_OBJ_TYPE_CCCD: {
// TODO: Implement CCCD persistence.
DEBUG_printf("ble_secret_store_read: CCCD not supported.\n");
return -1;
}
default:
return BLE_HS_ENOTSUP;
}
const uint8_t *value_data;
size_t value_data_len;
if (!mp_bluetooth_gap_on_get_secret(obj_type, key->sec.idx, key_data, key_data_len, &value_data, &value_data_len)) {
DEBUG_printf("ble_secret_store_read: Key not found: type=%d, index=%u, key=0x%p, len=" UINT_FMT "\n", obj_type, key->sec.idx, key_data, key_data_len);
return BLE_HS_ENOENT;
}
if (value_data_len != sizeof(struct ble_store_value_sec)) {
DEBUG_printf("ble_secret_store_read: Invalid key data: actual=" UINT_FMT " expected=" UINT_FMT "\n", value_data_len, sizeof(struct ble_store_value_sec));
return BLE_HS_ENOENT;
}
memcpy((uint8_t *)&value->sec, value_data, sizeof(struct ble_store_value_sec));
DEBUG_printf("ble_secret_store_read: found secret\n");
if (obj_type == BLE_STORE_OBJ_TYPE_OUR_SEC) {
// TODO: Verify ediv_rand matches.
}
return 0;
}
STATIC int ble_secret_store_write(int obj_type, const union ble_store_value *val) {
DEBUG_printf("ble_secret_store_write: %d\n", obj_type);
switch (obj_type) {
case BLE_STORE_OBJ_TYPE_PEER_SEC:
case BLE_STORE_OBJ_TYPE_OUR_SEC: {
// <type=peer,addr,edivrand>
struct ble_store_key_sec key_sec;
const struct ble_store_value_sec *value_sec = &val->sec;
ble_store_key_from_value_sec(&key_sec, value_sec);
assert(ble_addr_cmp(&key_sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
assert(key_sec.ediv_rand_present);
if (!mp_bluetooth_gap_on_set_secret(obj_type, (const uint8_t *)&key_sec.peer_addr, sizeof(ble_addr_t), (const uint8_t *)value_sec, sizeof(struct ble_store_value_sec))) {
DEBUG_printf("Failed to write key: type=%d\n", obj_type);
return BLE_HS_ESTORE_CAP;
}
DEBUG_printf("ble_secret_store_write: wrote secret\n");
return 0;
}
case BLE_STORE_OBJ_TYPE_CCCD: {
// TODO: Implement CCCD persistence.
DEBUG_printf("ble_secret_store_write: CCCD not supported.\n");
// Just pretend we wrote it.
return 0;
}
default:
return BLE_HS_ENOTSUP;
}
}
STATIC int ble_secret_store_delete(int obj_type, const union ble_store_key *key) {
DEBUG_printf("ble_secret_store_delete: %d\n", obj_type);
switch (obj_type) {
case BLE_STORE_OBJ_TYPE_PEER_SEC:
case BLE_STORE_OBJ_TYPE_OUR_SEC: {
// <type=peer,addr,*>
assert(ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
// ediv_rand is optional (will not be present for delete).
if (!mp_bluetooth_gap_on_set_secret(obj_type, (const uint8_t *)&key->sec.peer_addr, sizeof(ble_addr_t), NULL, 0)) {
DEBUG_printf("Failed to delete key: type=%d\n", obj_type);
return BLE_HS_ENOENT;
}
DEBUG_printf("ble_secret_store_delete: deleted secret\n");
return 0;
}
case BLE_STORE_OBJ_TYPE_CCCD: {
// TODO: Implement CCCD persistence.
DEBUG_printf("ble_secret_store_delete: CCCD not supported.\n");
// Just pretend it wasn't there.
return BLE_HS_ENOENT;
}
default:
return BLE_HS_ENOTSUP;
}
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
MP_REGISTER_ROOT_POINTER(struct _mp_bluetooth_nimble_malloc_t *bluetooth_nimble_memory);
#endif
MP_REGISTER_ROOT_POINTER(struct _mp_bluetooth_nimble_root_pointers_t *bluetooth_nimble_root_pointers);
#endif // MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE