micropython/ports/unix/unix_mphal.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

262 lines
7.7 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <fcntl.h>
#include "py/mphal.h"
#include "py/mpthread.h"
#include "py/runtime.h"
#include "extmod/misc.h"
#if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 25)
#include <sys/random.h>
#define _HAVE_GETRANDOM
#endif
#endif
#ifndef _WIN32
#include <signal.h>
STATIC void sighandler(int signum) {
if (signum == SIGINT) {
#if MICROPY_ASYNC_KBD_INTR
#if MICROPY_PY_THREAD_GIL
// Since signals can occur at any time, we may not be holding the GIL when
// this callback is called, so it is not safe to raise an exception here
#error "MICROPY_ASYNC_KBD_INTR and MICROPY_PY_THREAD_GIL are not compatible"
#endif
mp_obj_exception_clear_traceback(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception)));
sigset_t mask;
sigemptyset(&mask);
// On entry to handler, its signal is blocked, and unblocked on
// normal exit. As we instead perform longjmp, unblock it manually.
sigprocmask(SIG_SETMASK, &mask, NULL);
nlr_raise(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception)));
#else
if (MP_STATE_MAIN_THREAD(mp_pending_exception) == MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception))) {
// this is the second time we are called, so die straight away
exit(1);
}
mp_sched_keyboard_interrupt();
#endif
}
}
#endif
void mp_hal_set_interrupt_char(char c) {
// configure terminal settings to (not) let ctrl-C through
if (c == CHAR_CTRL_C) {
#ifndef _WIN32
// enable signal handler
struct sigaction sa;
sa.sa_flags = 0;
sa.sa_handler = sighandler;
sigemptyset(&sa.sa_mask);
sigaction(SIGINT, &sa, NULL);
#endif
} else {
#ifndef _WIN32
// disable signal handler
struct sigaction sa;
sa.sa_flags = 0;
sa.sa_handler = SIG_DFL;
sigemptyset(&sa.sa_mask);
sigaction(SIGINT, &sa, NULL);
#endif
}
}
#if MICROPY_USE_READLINE == 1
#include <termios.h>
static struct termios orig_termios;
void mp_hal_stdio_mode_raw(void) {
// save and set terminal settings
tcgetattr(0, &orig_termios);
static struct termios termios;
termios = orig_termios;
termios.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);
termios.c_cflag = (termios.c_cflag & ~(CSIZE | PARENB)) | CS8;
termios.c_lflag = 0;
termios.c_cc[VMIN] = 1;
termios.c_cc[VTIME] = 0;
tcsetattr(0, TCSAFLUSH, &termios);
}
void mp_hal_stdio_mode_orig(void) {
// restore terminal settings
tcsetattr(0, TCSAFLUSH, &orig_termios);
}
#endif
#if MICROPY_PY_OS_DUPTERM
static int call_dupterm_read(size_t idx) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t read_m[3];
mp_load_method(MP_STATE_VM(dupterm_objs[idx]), MP_QSTR_read, read_m);
read_m[2] = MP_OBJ_NEW_SMALL_INT(1);
mp_obj_t res = mp_call_method_n_kw(1, 0, read_m);
if (res == mp_const_none) {
return -2;
}
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(res, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len == 0) {
mp_printf(&mp_plat_print, "dupterm: EOF received, deactivating\n");
MP_STATE_VM(dupterm_objs[idx]) = MP_OBJ_NULL;
return -1;
}
nlr_pop();
return *(byte *)bufinfo.buf;
} else {
// Temporarily disable dupterm to avoid infinite recursion
mp_obj_t save_term = MP_STATE_VM(dupterm_objs[idx]);
MP_STATE_VM(dupterm_objs[idx]) = NULL;
mp_printf(&mp_plat_print, "dupterm: ");
mp_obj_print_exception(&mp_plat_print, nlr.ret_val);
MP_STATE_VM(dupterm_objs[idx]) = save_term;
}
return -1;
}
#endif
int mp_hal_stdin_rx_chr(void) {
#if MICROPY_PY_OS_DUPTERM
// TODO only support dupterm one slot at the moment
if (MP_STATE_VM(dupterm_objs[0]) != MP_OBJ_NULL) {
int c;
do {
c = call_dupterm_read(0);
} while (c == -2);
if (c == -1) {
goto main_term;
}
if (c == '\n') {
c = '\r';
}
return c;
}
main_term:;
#endif
unsigned char c;
ssize_t ret;
MP_HAL_RETRY_SYSCALL(ret, read(STDIN_FILENO, &c, 1), {});
if (ret == 0) {
c = 4; // EOF, ctrl-D
} else if (c == '\n') {
c = '\r';
}
return c;
}
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
mp_uint_t mp_hal_stdout_tx_strn(const char *str, size_t len) {
ssize_t ret;
MP_HAL_RETRY_SYSCALL(ret, write(STDOUT_FILENO, str, len), {});
ports: Fix sys.stdout.buffer.write() return value. MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl>
2023-06-18 10:46:25 +01:00
mp_uint_t written = ret < 0 ? 0 : ret;
int dupterm_res = mp_os_dupterm_tx_strn(str, len);
if (dupterm_res >= 0) {
written = MIN((mp_uint_t)dupterm_res, written);
}
return written;
}
2015-11-01 21:22:55 +00:00
// cooked is same as uncooked because the terminal does some postprocessing
void mp_hal_stdout_tx_strn_cooked(const char *str, size_t len) {
mp_hal_stdout_tx_strn(str, len);
}
void mp_hal_stdout_tx_str(const char *str) {
mp_hal_stdout_tx_strn(str, strlen(str));
}
#ifndef mp_hal_ticks_ms
mp_uint_t mp_hal_ticks_ms(void) {
#if (defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0) && defined(_POSIX_MONOTONIC_CLOCK)
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return tv.tv_sec * 1000 + tv.tv_nsec / 1000000;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000 + tv.tv_usec / 1000;
#endif
}
#endif
#ifndef mp_hal_ticks_us
mp_uint_t mp_hal_ticks_us(void) {
#if (defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0) && defined(_POSIX_MONOTONIC_CLOCK)
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return tv.tv_sec * 1000000 + tv.tv_nsec / 1000;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
#endif
}
#endif
#ifndef mp_hal_time_ns
uint64_t mp_hal_time_ns(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return (uint64_t)tv.tv_sec * 1000000000ULL + (uint64_t)tv.tv_usec * 1000ULL;
}
#endif
#ifndef mp_hal_delay_ms
void mp_hal_delay_ms(mp_uint_t ms) {
mp_uint_t start = mp_hal_ticks_ms();
while (mp_hal_ticks_ms() - start < ms) {
mp_event_wait_ms(1);
}
}
#endif
void mp_hal_get_random(size_t n, void *buf) {
#ifdef _HAVE_GETRANDOM
RAISE_ERRNO(getrandom(buf, n, 0), errno);
#else
int fd = open("/dev/random", O_RDONLY);
RAISE_ERRNO(fd, errno);
RAISE_ERRNO(read(fd, buf, n), errno);
close(fd);
#endif
}