micropython/ports/renesas-ra/ra/ra_sci.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1249 lines
30 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hal_data.h"
#include "ra_config.h"
#include "ra_gpio.h"
#include "ra_int.h"
#include "ra_utils.h"
#include "ra_sci.h"
#include "r_sci_uart.h"
#if !defined(RA_PRI_UART)
#define RA_PRI_UART (1)
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wunused-parameter"
// #pragma GCC diagnostic ignored "-Wconversion"
// #pragma GCC diagnostic ignored "-Wshift-negative-value"
// #pragma GCC diagnostic ignored "-Wunused-but-set-variable"
// #pragma GCC diagnostic ignored "-Wsequence-point"
// #pragma GCC diagnostic ignored "-Wunused-function"
#endif
enum
{
#if defined(VECTOR_NUMBER_SCI0_RXI)
SCI0_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
SCI1_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
SCI2_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
SCI3_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
SCI4_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
SCI5_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
SCI6_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
SCI7_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
SCI8_IDX,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
SCI9_IDX,
#endif
SCI_IDX_MAX,
};
static const IRQn_Type idx_to_rxirq[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
VECTOR_NUMBER_SCI0_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
VECTOR_NUMBER_SCI1_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
VECTOR_NUMBER_SCI2_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
VECTOR_NUMBER_SCI3_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
VECTOR_NUMBER_SCI4_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
VECTOR_NUMBER_SCI5_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
VECTOR_NUMBER_SCI6_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
VECTOR_NUMBER_SCI7_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
VECTOR_NUMBER_SCI8_RXI,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
VECTOR_NUMBER_SCI9_RXI,
#endif
};
static const IRQn_Type idx_to_txirq[] = {
#if defined(VECTOR_NUMBER_SCI0_TXI)
VECTOR_NUMBER_SCI0_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI1_TXI)
VECTOR_NUMBER_SCI1_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI2_TXI)
VECTOR_NUMBER_SCI2_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI3_TXI)
VECTOR_NUMBER_SCI3_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI4_TXI)
VECTOR_NUMBER_SCI4_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI5_TXI)
VECTOR_NUMBER_SCI5_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI6_TXI)
VECTOR_NUMBER_SCI6_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI7_TXI)
VECTOR_NUMBER_SCI7_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI8_TXI)
VECTOR_NUMBER_SCI8_TXI,
#endif
#if defined(VECTOR_NUMBER_SCI9_TXI)
VECTOR_NUMBER_SCI9_TXI,
#endif
};
static const IRQn_Type idx_to_teirq[] = {
#if defined(VECTOR_NUMBER_SCI0_TEI)
VECTOR_NUMBER_SCI0_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI1_TEI)
VECTOR_NUMBER_SCI1_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI2_TEI)
VECTOR_NUMBER_SCI2_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI3_TEI)
VECTOR_NUMBER_SCI3_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI4_TEI)
VECTOR_NUMBER_SCI4_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI5_TEI)
VECTOR_NUMBER_SCI5_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI6_TEI)
VECTOR_NUMBER_SCI6_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI7_TEI)
VECTOR_NUMBER_SCI7_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI8_TEI)
VECTOR_NUMBER_SCI8_TEI,
#endif
#if defined(VECTOR_NUMBER_SCI9_TEI)
VECTOR_NUMBER_SCI9_TEI,
#endif
};
static const IRQn_Type idx_to_erirq[] = {
#if defined(VECTOR_NUMBER_SCI0_ERI)
VECTOR_NUMBER_SCI0_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI1_ERI)
VECTOR_NUMBER_SCI1_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI2_ERI)
VECTOR_NUMBER_SCI2_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI3_ERI)
VECTOR_NUMBER_SCI3_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI4_ERI)
VECTOR_NUMBER_SCI4_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI5_ERI)
VECTOR_NUMBER_SCI5_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI6_ERI)
VECTOR_NUMBER_SCI6_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI7_ERI)
VECTOR_NUMBER_SCI7_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI8_ERI)
VECTOR_NUMBER_SCI8_ERI,
#endif
#if defined(VECTOR_NUMBER_SCI9_ERI)
VECTOR_NUMBER_SCI9_ERI,
#endif
};
static uint32_t ch_to_idx[SCI_CH_MAX] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
SCI0_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
SCI1_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
SCI2_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
SCI3_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
SCI4_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
SCI5_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
SCI6_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
SCI7_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
SCI8_IDX,
#else
0,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
SCI9_IDX,
#else
0,
#endif
};
static R_SCI0_Type *sci_regs[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
(R_SCI0_Type *)0x40070000,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
(R_SCI0_Type *)0x40070020,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
(R_SCI0_Type *)0x40070040,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
(R_SCI0_Type *)0x40070060,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
(R_SCI0_Type *)0x40070080,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
(R_SCI0_Type *)0x400700a0,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
(R_SCI0_Type *)0x400700c0,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
(R_SCI0_Type *)0x400700e0,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
(R_SCI0_Type *)0x40070100,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
(R_SCI0_Type *)0x40070120,
#endif
};
static uint32_t sci_module_mask[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
R_MSTP_MSTPCRB_MSTPB31_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
R_MSTP_MSTPCRB_MSTPB30_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
R_MSTP_MSTPCRB_MSTPB29_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
R_MSTP_MSTPCRB_MSTPB28_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
R_MSTP_MSTPCRB_MSTPB27_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
R_MSTP_MSTPCRB_MSTPB26_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
R_MSTP_MSTPCRB_MSTPB25_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
R_MSTP_MSTPCRB_MSTPB24_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
R_MSTP_MSTPCRB_MSTPB23_Msk,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
R_MSTP_MSTPCRB_MSTPB22_Msk,
#endif
};
static const ra_af_pin_t ra_sci_tx_pins[] = {
#if defined(RA4M1)
{ AF_SCI1, 0, P101 },
{ AF_SCI1, 0, P205 },
{ AF_SCI1, 0, P411 },
{ AF_SCI2, 1, P213 },
{ AF_SCI2, 1, P401 },
{ AF_SCI2, 1, P501 },
{ AF_SCI2, 2, P102 },
{ AF_SCI1, 2, P112 },
{ AF_SCI1, 2, P302 },
{ AF_SCI2, 9, P109 },
{ AF_SCI2, 9, P203 },
{ AF_SCI2, 9, P409 },
{ AF_SCI2, 9, P602 },
#elif defined(RA4W1)
{ AF_SCI1, 0, P101 },
{ AF_SCI2, 1, P213 },
{ AF_SCI1, 4, P205 },
{ AF_SCI2, 9, P109 },
#elif defined(RA6M1)
{ AF_SCI1, 0, P101 },
{ AF_SCI1, 0, P411 },
{ AF_SCI2, 1, P213 },
{ AF_SCI1, 2, P112 },
{ AF_SCI1, 2, P302 },
{ AF_SCI2, 3, P409 },
{ AF_SCI1, 4, P205 },
{ AF_SCI1, 8, P105 },
{ AF_SCI2, 9, P109 },
{ AF_SCI2, 9, P602 },
#elif defined(RA6M2)
{ AF_SCI1, 0, P101 },
{ AF_SCI1, 0, P411 },
{ AF_SCI1, 1, P213 },
{ AF_SCI2, 1, P709 },
{ AF_SCI1, 2, P112 },
{ AF_SCI1, 2, P302 },
{ AF_SCI2, 3, P310 },
{ AF_SCI2, 3, P409 },
{ AF_SCI1, 4, P205 },
{ AF_SCI1, 4, P512 },
{ AF_SCI2, 5, P501 },
{ AF_SCI1, 6, P305 },
{ AF_SCI1, 6, P506 },
{ AF_SCI2, 7, P401 },
{ AF_SCI2, 7, P613 },
{ AF_SCI1, 8, P105 },
{ AF_SCI2, 9, P109 },
{ AF_SCI2, 9, P203 },
{ AF_SCI2, 9, P602 },
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define SCI_TX_PINS_SIZE sizeof(ra_sci_tx_pins) / sizeof(ra_af_pin_t)
static const ra_af_pin_t ra_sci_rx_pins[] = {
#if defined(RA4M1)
{ AF_SCI1, 0, P100 },
{ AF_SCI1, 0, P104 },
{ AF_SCI1, 0, P206 },
{ AF_SCI1, 0, P410 },
{ AF_SCI2, 1, P212 },
{ AF_SCI2, 1, P402 },
{ AF_SCI2, 1, P502 },
{ AF_SCI2, 1, P708 },
{ AF_SCI1, 2, P301 },
{ AF_SCI2, 9, P110 },
{ AF_SCI2, 9, P202 },
{ AF_SCI2, 9, P408 },
{ AF_SCI2, 9, P601 },
#elif defined(RA4W1)
{ AF_SCI1, 0, P100 },
{ AF_SCI1, 0, P104 },
{ AF_SCI2, 1, P212 },
{ AF_SCI2, 1, P402 },
{ AF_SCI1, 4, P206 },
{ AF_SCI2, 9, P110 },
#elif defined(RA6M1)
{ AF_SCI1, 0, P100 },
{ AF_SCI1, 0, P410 },
{ AF_SCI2, 1, P212 },
{ AF_SCI2, 1, P708 },
{ AF_SCI1, 2, P113 },
{ AF_SCI1, 2, P301 },
{ AF_SCI2, 3, P408 },
{ AF_SCI1, 4, P206 },
{ AF_SCI1, 8, P104 },
{ AF_SCI2, 9, P110 },
{ AF_SCI2, 9, P601 },
#elif defined(RA6M2)
{ AF_SCI1, 0, P100 },
{ AF_SCI1, 0, P410 },
{ AF_SCI1, 1, P212 },
{ AF_SCI2, 1, P708 },
{ AF_SCI1, 2, P113 },
{ AF_SCI1, 2, P301 },
{ AF_SCI2, 3, P309 },
{ AF_SCI2, 3, P408 },
{ AF_SCI1, 4, P206 },
{ AF_SCI1, 4, P511 },
{ AF_SCI2, 5, P502 },
{ AF_SCI1, 6, P304 },
{ AF_SCI1, 6, P505 },
{ AF_SCI2, 7, P402 },
{ AF_SCI2, 7, P614 },
{ AF_SCI1, 8, P104 },
{ AF_SCI2, 9, P110 },
{ AF_SCI2, 9, P202 },
{ AF_SCI2, 9, P601 },
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define SCI_RX_PINS_SIZE sizeof(ra_sci_rx_pins) / sizeof(ra_af_pin_t)
static const ra_af_pin_t ra_sci_cts_pins[] = {
#if defined(RA4M1)
{ AF_SCI1, 0, P103 },
{ AF_SCI1, 0, P401 },
{ AF_SCI1, 0, P407 },
{ AF_SCI1, 0, P413 },
{ AF_SCI2, 1, P101 },
{ AF_SCI2, 1, P403 },
{ AF_SCI1, 1, P408 },
{ AF_SCI2, 1, P504 },
{ AF_SCI1, 2, P110 },
{ AF_SCI1, 2, P203 },
{ AF_SCI2, 9, P108 },
{ AF_SCI2, 9, P205 },
{ AF_SCI2, 9, P301 },
{ AF_SCI2, 9, P603 },
#elif defined(RA4W1)
{ AF_SCI1, 0, P103 },
{ AF_SCI2, 1, P101 },
{ AF_SCI1, 4, P407 },
{ AF_SCI2, 9, P108 },
{ AF_SCI2, 9, P205 },
#elif defined(RA6M1)
{ AF_SCI1, 0, P103 },
{ AF_SCI1, 0, P413 },
{ AF_SCI2, 1, P101 },
{ AF_SCI1, 2, P110 },
{ AF_SCI2, 3, P411 },
{ AF_SCI1, 4, P401 },
{ AF_SCI1, 4, P407 },
{ AF_SCI1, 8, P107 },
{ AF_SCI2, 9, P108 },
{ AF_SCI2, 9, P301 },
#elif defined(RA6M2)
{ AF_SCI1, 0, P103 },
{ AF_SCI1, 0, P413 },
{ AF_SCI2, 1, P101 },
{ AF_SCI2, 1, P711 },
{ AF_SCI1, 2, P110 },
{ AF_SCI1, 2, P203 },
{ AF_SCI2, 3, P312 },
{ AF_SCI2, 3, P411 },
{ AF_SCI1, 4, P401 },
{ AF_SCI1, 4, P407 },
{ AF_SCI2, 5, P504 },
{ AF_SCI1, 6, P307 },
{ AF_SCI1, 6, P503 },
{ AF_SCI2, 7, P403 },
{ AF_SCI2, 7, P611 },
{ AF_SCI1, 8, P107 },
{ AF_SCI2, 9, P108 },
{ AF_SCI2, 9, P205 },
{ AF_SCI2, 9, P301 },
{ AF_SCI2, 9, P603 },
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define SCI_CTS_PINS_SIZE sizeof(ra_sci_cts_pins) / sizeof(ra_af_pin_t)
typedef struct _sci_fifo {
volatile uint32_t tail, head, len, busy;
uint8_t *bufp;
uint32_t size;
} sci_fifo;
static uint32_t ra_sci_init_flag[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
0,
#endif
};
static SCI_CB sci_cb[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
(SCI_CB)0,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
(SCI_CB)0,
#endif
};
static uint8_t ch_9bit[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
0,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
0,
#endif
};
static uint8_t tx_buf[SCI_IDX_MAX][SCI_TX_BUF_SIZE];
static uint8_t rx_buf[SCI_IDX_MAX][SCI_RX_BUF_SIZE];
static volatile sci_fifo tx_fifo[SCI_IDX_MAX];
static volatile sci_fifo rx_fifo[SCI_IDX_MAX];
static uint32_t m_cts_pin[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
PIN_END,
#endif
};
static uint32_t m_rts_pin[] = {
#if defined(VECTOR_NUMBER_SCI0_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI1_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI2_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI3_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI4_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI5_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI6_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI7_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI8_RXI)
PIN_END,
#endif
#if defined(VECTOR_NUMBER_SCI9_RXI)
PIN_END,
#endif
};
static void delay_us(volatile unsigned int us) {
us *= 48;
while (us-- > 0) {
;
}
}
bool ra_af_find_ch_af(ra_af_pin_t *af_pin, uint32_t size, uint32_t pin, uint32_t *ch, uint32_t *af) {
bool find = false;
uint32_t i;
for (i = 0; i < size; i++) {
if (af_pin->pin == pin) {
find = true;
*ch = af_pin->ch;
*af = af_pin->af;
break;
}
af_pin++;
}
return find;
}
static void ra_sci_tx_set_pin(uint32_t pin) {
bool find = false;
uint32_t ch;
uint32_t af;
find = ra_af_find_ch_af((ra_af_pin_t *)&ra_sci_tx_pins, SCI_TX_PINS_SIZE, pin, &ch, &af);
if (find) {
ra_gpio_config(pin, GPIO_MODE_AF_PP, GPIO_NOPULL, GPIO_LOW_POWER, af);
}
}
static void ra_sci_rx_set_pin(uint32_t pin) {
bool find = false;
uint32_t ch;
uint32_t af;
find = ra_af_find_ch_af((ra_af_pin_t *)&ra_sci_rx_pins, SCI_RX_PINS_SIZE, pin, &ch, &af);
if (find) {
ra_gpio_config(pin, GPIO_MODE_INPUT, GPIO_PULLUP, GPIO_LOW_POWER, af);
}
}
static void ra_sci_cts_set_pin(uint32_t pin) {
bool find = false;
uint32_t ch;
uint32_t af;
find = ra_af_find_ch_af((ra_af_pin_t *)&ra_sci_cts_pins, SCI_CTS_PINS_SIZE, pin, &ch, &af);
if (find) {
ra_gpio_config(pin, GPIO_MODE_INPUT, GPIO_PULLUP, GPIO_LOW_POWER, af);
}
}
static void ra_sci_module_start(uint32_t ch) {
ra_mstpcrb_start(sci_module_mask[ch_to_idx[ch]]);
}
static void ra_sci_module_stop(uint32_t ch) {
ra_mstpcrb_stop(sci_module_mask[ch_to_idx[ch]]);
}
void ra_sci_rx_set_callback(int ch, SCI_CB cb) {
sci_cb[ch_to_idx[ch]] = cb;
}
static void ra_sci_irq_disable(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
R_BSP_IrqDisable(idx_to_rxirq[idx]);
R_BSP_IrqDisable(idx_to_txirq[idx]);
R_BSP_IrqDisable(idx_to_teirq[idx]);
R_BSP_IrqDisable(idx_to_erirq[idx]);
R_BSP_IrqStatusClear(idx_to_rxirq[idx]);
R_BSP_IrqStatusClear(idx_to_txirq[idx]);
R_BSP_IrqStatusClear(idx_to_teirq[idx]);
R_BSP_IrqStatusClear(idx_to_erirq[idx]);
}
static void ra_sci_irq_enable(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
R_BSP_IrqEnable(idx_to_rxirq[idx]);
R_BSP_IrqEnable(idx_to_txirq[idx]);
R_BSP_IrqEnable(idx_to_teirq[idx]);
R_BSP_IrqEnable(idx_to_erirq[idx]);
}
void ra_sci_rxirq_disable(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
R_BSP_IrqDisable(idx_to_rxirq[idx]);
}
void ra_sci_rxirq_enable(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
R_BSP_IrqEnable(idx_to_rxirq[idx]);
}
bool ra_sci_is_rxirq_enable(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
uint32_t _irq = (uint32_t)idx_to_rxirq[idx];
return NVIC->ISER[(_irq >> 5UL)] == (uint32_t)(1UL << (_irq & 0x1FUL));
}
static void ra_sci_irq_priority(uint32_t ch, uint32_t ipl) {
uint32_t idx = ch_to_idx[ch];
R_BSP_IrqCfg(idx_to_rxirq[idx], ipl, (void *)NULL);
R_BSP_IrqCfg(idx_to_txirq[idx], ipl, (void *)NULL);
R_BSP_IrqCfg(idx_to_teirq[idx], ipl, (void *)NULL);
R_BSP_IrqCfg(idx_to_erirq[idx], ipl, (void *)NULL);
}
static void ra_sci_isr_rx(uint32_t ch) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t idx = ch_to_idx[ch];
uint16_t d;
if (ch_9bit[idx]) {
d = (uint16_t)sci_regs[idx]->RDRHL;
} else {
d = (uint16_t)sci_regs[idx]->RDR;
}
if (sci_cb[idx]) {
if ((*sci_cb[idx])(ch, (int)d)) {
// goto ra_sci_isr_rx_exit;
}
}
uint32_t size = rx_fifo[idx].size;
sci_fifo *rxfifo = (sci_fifo *)&rx_fifo[idx];
if (rxfifo->len < size) {
uint32_t i = rxfifo->head;
if (ch_9bit[idx]) {
*(uint16_t *)(rxfifo->bufp + i) = (uint16_t)d;
i += 2;
rxfifo->len += 2;
} else {
*(rxfifo->bufp + i) = (uint8_t)d;
i++;
rxfifo->len++;
}
rxfifo->head = i % size;
if (m_rts_pin[idx] != PIN_END) {
if (rxfifo->len > (size - RA_SCI_FLOW_START_NUM)) {
ra_gpio_write(m_rts_pin[idx], 1);
}
}
}
// ra_sci_isr_rx_exit:
R_BSP_IrqStatusClear(irq);
}
static void ra_sci_isr_er(uint32_t ch) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
R_BSP_IrqStatusClear(irq);
uint32_t idx = ch_to_idx[ch];
R_SCI0_Type *sci_reg = sci_regs[idx];
sci_reg->RDR;
while (0 != (sci_reg->SSR & 0x38)) {
sci_reg->RDR;
sci_reg->SSR = (uint8_t)((sci_reg->SSR & ~0x38) | 0xc0);
if (0 != (sci_reg->SSR & 0x38)) {
__asm__ __volatile__ ("nop");
}
}
}
static void ra_sci_isr_tx(uint32_t ch) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t idx = ch_to_idx[ch];
uint32_t size = tx_fifo[idx].size;
sci_fifo *txfifo = (sci_fifo *)&tx_fifo[idx];
if (txfifo->len != 0) {
uint32_t i = txfifo->tail;
if (ch_9bit[idx]) {
sci_regs[idx]->TDRHL = *(uint16_t *)(txfifo->bufp + i);
i += 2;
txfifo->len -= 2;
} else {
sci_regs[idx]->TDR = (uint8_t)*(txfifo->bufp + i);
i++;
txfifo->len--;
}
txfifo->tail = i % size;
} else {
/* tx_fifo[idx].len == 0 */
/* after transfer completed */
uint8_t scr = sci_regs[idx]->SCR;
scr &= (uint8_t) ~0x80; /* TIE disable */
scr |= (uint8_t)0x04; /* TEIE enable */
sci_regs[idx]->SCR = scr;
}
R_BSP_IrqStatusClear(irq);
}
void ra_sci_isr_te(uint32_t ch) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t idx = ch_to_idx[ch];
tx_fifo[idx].busy = 0;
sci_regs[idx]->SCR &= (uint8_t) ~0x84; /* TIE and TEIE disable */
R_BSP_IrqStatusClear(irq);
}
int ra_sci_rx_ch(uint32_t ch) {
uint16_t c;
uint32_t idx = ch_to_idx[ch];
uint32_t size = rx_fifo[idx].size;
sci_fifo *rxfifo = (sci_fifo *)&rx_fifo[idx];
if (rxfifo->len) {
uint32_t state = ra_disable_irq();
uint32_t i = rxfifo->tail;
if (ch_9bit[idx]) {
c = *(uint16_t *)(rxfifo->bufp + i);
i += 2;
rxfifo->len -= 2;
} else {
c = (uint16_t)*(rxfifo->bufp + i);
i++;
rxfifo->len--;
}
rxfifo->tail = i % size;
if (m_rts_pin[idx] != PIN_END) {
if (rxfifo->len <= (size - RA_SCI_FLOW_START_NUM)) {
ra_gpio_write(m_rts_pin[idx], 0);
}
}
ra_enable_irq(state);
} else {
c = 0;
}
return (int)c;
}
int ra_sci_rx_any(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
return (int)(rx_fifo[idx].len != 0);
}
void ra_sci_tx_ch(uint32_t ch, int c) {
uint32_t idx = ch_to_idx[ch];
uint32_t size = tx_fifo[idx].size;
sci_fifo *txfifo = (sci_fifo *)&tx_fifo[idx];
while (tx_fifo[idx].len == size) {
}
uint32_t state = ra_disable_irq();
uint32_t i = tx_fifo[idx].head;
if (ch_9bit[idx]) {
*(uint16_t *)(txfifo->bufp + i) = (uint16_t)c;
i += 2;
txfifo->len += 2;
} else {
*(txfifo->bufp + i) = (uint8_t)c;
i++;
txfifo->len++;
}
txfifo->head = i % size;
if (!txfifo->busy) {
txfifo->busy = 1;
uint8_t scr = sci_regs[idx]->SCR;
if ((scr & 0xa0) != 0) {
sci_regs[idx]->SCR &= ~0xa0;
}
sci_regs[idx]->SCR |= 0xa0; /* TIE and TE enable */
}
ra_enable_irq(state);
}
int ra_sci_tx_wait(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
return (int)(tx_fifo[idx].len != (tx_fifo[idx].size - 1));
}
int ra_sci_tx_busy(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
return (int)(tx_fifo[idx].busy);
}
int ra_sci_tx_bufsize(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
return (int)(tx_fifo[idx].size - 1);
}
void ra_sci_tx_break(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
R_SCI0_Type *sci_reg = sci_regs[idx];
uint8_t scr = sci_reg->SCR;
uint8_t smr = sci_reg->SMR;
sci_reg->SCR = 0;
while (sci_reg->SCR != 0) {
;
}
sci_reg->SMR_b.STOP = 1;
sci_reg->SCR = scr;
sci_reg->TDR = 0;
while (sci_reg->SSR_b.TDRE == 0) {
;
}
sci_reg->SMR = smr;
return;
}
void ra_sci_tx_str(uint32_t ch, uint8_t *p) {
int c;
uint32_t idx = ch_to_idx[ch];
if (ch_9bit[idx]) {
uint16_t *q = (uint16_t *)p;
while ((c = *q++) != 0) {
ra_sci_tx_ch(ch, (int)c);
}
} else {
while ((c = (int)*p++) != 0) {
ra_sci_tx_ch(ch, (int)c);
}
}
}
static void ra_sci_fifo_set(sci_fifo *fifo, uint8_t *bufp, uint32_t size) {
fifo->head = 0;
fifo->tail = 0;
fifo->len = 0;
fifo->busy = 0;
fifo->bufp = bufp;
fifo->size = size;
}
void ra_sci_txfifo_set(uint32_t ch, uint8_t *bufp, uint32_t size) {
uint32_t idx = ch_to_idx[ch];
sci_fifo *fifo = (sci_fifo *)&tx_fifo[idx];
ra_sci_fifo_set(fifo, bufp, size);
}
void ra_sci_rxfifo_set(uint32_t ch, uint8_t *bufp, uint32_t size) {
uint32_t idx = ch_to_idx[ch];
sci_fifo *fifo = (sci_fifo *)&rx_fifo[idx];
ra_sci_fifo_set(fifo, bufp, size);
}
static void ra_sci_fifo_init(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
ra_sci_txfifo_set(ch, (uint8_t *)&tx_buf[idx][0], SCI_TX_BUF_SIZE);
ra_sci_rxfifo_set(ch, (uint8_t *)&rx_buf[idx][0], SCI_RX_BUF_SIZE);
}
void ra_sci_set_baud(uint32_t ch, uint32_t baud) {
uint32_t idx = ch_to_idx[ch];
R_SCI0_Type *sci_reg = sci_regs[idx];
baud_setting_t baud_setting;
// baudrate_modulation=1(enabled), baudrate_max_err=5%(general value for FSP example).
if (R_SCI_UART_BaudCalculate(baud, 1, 5000, &baud_setting) == FSP_SUCCESS) {
// Disable transmitter and receiver.
uint8_t scr = sci_reg->SCR;
sci_reg->SCR = scr & ~(0xF0);
// Change baudrate
sci_reg->BRR = baud_setting.brr;
// Update CKS(b1:b0)
sci_reg->SMR_b.CKS = (uint8_t)(0x03U & baud_setting.cks);
sci_reg->MDDR = baud_setting.mddr;
// Update BGDM(b6)/ABCS(b4)/ABCSE(b3)/BRME(b2) bits
sci_reg->SEMR = (uint8_t)((sci_reg->SEMR & ~(0x5cU)) | (baud_setting.semr_baudrate_bits & 0x5cU));
// Restore SCR
sci_reg->SCR = scr;
}
}
/*
* bits: 7, 8, 9
* parity: none:0, odd:1, even:2
*/
void ra_sci_init_with_flow(uint32_t ch, uint32_t tx_pin, uint32_t rx_pin, uint32_t baud, uint32_t bits, uint32_t parity, uint32_t stop, uint32_t flow, uint32_t cts_pin, uint32_t rts_pin) {
uint8_t smr = 0;
uint8_t scmr = (uint8_t)0xf2;
uint32_t idx = ch_to_idx[ch];
R_SCI0_Type *sci_reg = sci_regs[idx];
if (ra_sci_init_flag[idx] == 0) {
ra_sci_fifo_init(ch);
sci_cb[idx] = 0;
ra_sci_init_flag[idx]++;
} else {
ra_sci_irq_disable(ch);
ra_sci_module_stop(ch);
}
ra_sci_module_start(ch);
ra_sci_tx_set_pin(tx_pin);
ra_sci_rx_set_pin(rx_pin);
if (flow) {
if (cts_pin != (uint32_t)PIN_END) {
m_cts_pin[idx] = cts_pin;
ra_sci_cts_set_pin(cts_pin);
}
if (rts_pin != (uint32_t)PIN_END) {
m_rts_pin[idx] = rts_pin;
ra_gpio_config(rts_pin, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_LOW_POWER, 0);
ra_gpio_write(rts_pin, 0);
}
}
ra_sci_irq_disable(ch);
ra_sci_irq_priority(ch, RA_PRI_UART);
uint32_t state = ra_disable_irq();
sci_reg->SCR = 0;
while (sci_reg->SCR != 0) {
;
}
if (bits == 7) {
smr |= (uint8_t)0x40;
} else {
smr &= (uint8_t) ~0x40;
}
if (parity != 0) {
smr |= (uint8_t)0x20;
} else {
smr &= (uint8_t) ~0x20;
}
if (parity == 1) {
smr |= (uint8_t)0x10;
} else {
smr &= (uint8_t) ~0x10;
}
if (stop == 2) {
smr |= (uint8_t)0x80;
} else {
smr &= (uint8_t) ~0x80;
}
sci_reg->SMR = smr;
if (bits == 9) {
scmr &= (uint8_t) ~0x10;
ch_9bit[idx] = 1;
} else {
scmr |= (uint8_t)0x10;
ch_9bit[idx] = 0;
}
if (flow) {
sci_reg->SPMR |= 0x01;
}
sci_reg->SCMR = scmr;
sci_reg->SEMR = (uint8_t)0xc0;
ra_sci_set_baud(ch, baud);
delay_us(10);
sci_reg->SCR = (uint8_t)0x50;
ra_sci_irq_enable(ch);
ra_enable_irq(state);
if (!ra_sci_init_flag[idx]) {
ra_sci_init_flag[idx] = true;
}
}
void ra_sci_init(uint32_t ch, uint32_t tx_pin, uint32_t rx_pin, uint32_t baud, uint32_t bits, uint32_t parity, uint32_t stop, uint32_t flow) {
ra_sci_init_with_flow(ch, tx_pin, rx_pin, baud, bits, parity, stop, flow, PIN_END, PIN_END);
}
void ra_sci_deinit(uint32_t ch) {
uint32_t idx = ch_to_idx[ch];
if (ra_sci_init_flag[idx] != 0) {
ra_sci_init_flag[idx]--;
if (ra_sci_init_flag[idx] == 0) {
ra_sci_irq_disable(ch);
ra_sci_module_stop(ch);
sci_cb[idx] = 0;
}
}
}
/* rx interrupt */
void sci_uart_rxi_isr(void) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t ch = irq_to_ch[(uint32_t)irq];
ra_sci_isr_rx(ch);
}
/* tx interrupt */
void sci_uart_txi_isr(void) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t ch = irq_to_ch[(uint32_t)irq];
ra_sci_isr_tx(ch);
}
/* er interrupt */
void sci_uart_eri_isr(void) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t ch = irq_to_ch[(uint32_t)irq];
ra_sci_isr_er(ch);
}
/* te interrupt */
void sci_uart_tei_isr(void) {
IRQn_Type irq = R_FSP_CurrentIrqGet();
uint32_t ch = irq_to_ch[(uint32_t)irq];
ra_sci_isr_te(ch);
}