micropython/ports/stm32/machine_uart.c

597 lines
22 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "lib/utils/interrupt_char.h"
#include "uart.h"
#include "irq.h"
#include "pendsv.h"
/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol. At
/// the physical level it consists of 2 lines: RX and TX. The unit of communication
/// is a character (not to be confused with a string character) which can be 8 or 9
/// bits wide.
///
/// UART objects can be created and initialised using:
///
/// from pyb import UART
///
/// uart = UART(1, 9600) # init with given baudrate
/// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
///
/// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
///
/// A UART object acts like a stream object and reading and writing is done
/// using the standard stream methods:
///
/// uart.read(10) # read 10 characters, returns a bytes object
/// uart.read() # read all available characters
/// uart.readline() # read a line
/// uart.readinto(buf) # read and store into the given buffer
/// uart.write('abc') # write the 3 characters
///
/// Individual characters can be read/written using:
///
/// uart.readchar() # read 1 character and returns it as an integer
/// uart.writechar(42) # write 1 character
///
/// To check if there is anything to be read, use:
///
/// uart.any() # returns True if any characters waiting
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_printf(print, "UART(%u)", self->uart_id);
} else {
mp_int_t bits;
switch (self->uart.Init.WordLength) {
#ifdef UART_WORDLENGTH_7B
case UART_WORDLENGTH_7B: bits = 7; break;
#endif
case UART_WORDLENGTH_8B: bits = 8; break;
case UART_WORDLENGTH_9B: default: bits = 9; break;
}
if (self->uart.Init.Parity != UART_PARITY_NONE) {
bits -= 1;
}
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=",
self->uart_id, self->uart.Init.BaudRate, bits);
if (self->uart.Init.Parity == UART_PARITY_NONE) {
mp_print_str(print, "None");
} else if (self->uart.Init.Parity == UART_PARITY_EVEN) {
mp_print_str(print, "0");
} else {
mp_print_str(print, "1");
}
mp_printf(print, ", stop=%u, flow=",
self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2);
if (self->uart.Init.HwFlowCtl == UART_HWCONTROL_NONE) {
mp_print_str(print, "0");
} else {
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
mp_print_str(print, "RTS");
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
mp_print_str(print, "|");
}
}
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
mp_print_str(print, "CTS");
}
}
mp_printf(print, ", timeout=%u, timeout_char=%u, rxbuf=%u)",
self->timeout, self->timeout_char,
self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer
}
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
///
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `flow` is RTS | CTS where RTS == 256, CTS == 512
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, // legacy
};
// parse args
struct {
mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len;
} args;
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args);
// set the UART configuration values
memset(&self->uart, 0, sizeof(self->uart));
UART_InitTypeDef *init = &self->uart.Init;
// baudrate
init->BaudRate = args.baudrate.u_int;
// parity
mp_int_t bits = args.bits.u_int;
if (args.parity.u_obj == mp_const_none) {
init->Parity = UART_PARITY_NONE;
} else {
mp_int_t parity = mp_obj_get_int(args.parity.u_obj);
init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
bits += 1; // STs convention has bits including parity
}
// number of bits
if (bits == 8) {
init->WordLength = UART_WORDLENGTH_8B;
} else if (bits == 9) {
init->WordLength = UART_WORDLENGTH_9B;
#ifdef UART_WORDLENGTH_7B
} else if (bits == 7) {
init->WordLength = UART_WORDLENGTH_7B;
#endif
} else {
mp_raise_ValueError("unsupported combination of bits and parity");
}
// stop bits
switch (args.stop.u_int) {
case 1: init->StopBits = UART_STOPBITS_1; break;
default: init->StopBits = UART_STOPBITS_2; break;
}
// flow control
init->HwFlowCtl = args.flow.u_int;
// extra config (not yet configurable)
init->Mode = UART_MODE_TX_RX;
init->OverSampling = UART_OVERSAMPLING_16;
// init UART (if it fails, it's because the port doesn't exist)
if (!uart_init2(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id));
}
// set timeout
self->timeout = args.timeout.u_int;
// set timeout_char
// make sure it is at least as long as a whole character (13 bits to be safe)
// minimum value is 2ms because sys-tick has a resolution of only 1ms
self->timeout_char = args.timeout_char.u_int;
uint32_t min_timeout_char = 13000 / init->BaudRate + 2;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) {
self->char_mask = 0x1ff;
self->char_width = CHAR_WIDTH_9BIT;
} else {
if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) {
self->char_mask = 0xff;
} else {
self->char_mask = 0x7f;
}
self->char_width = CHAR_WIDTH_8BIT;
}
self->read_buf_head = 0;
self->read_buf_tail = 0;
if (args.rxbuf.u_int >= 0) {
// rxbuf overrides legacy read_buf_len
args.read_buf_len.u_int = args.rxbuf.u_int;
}
if (args.read_buf_len.u_int <= 0) {
// no read buffer
self->read_buf_len = 0;
self->read_buf = NULL;
HAL_NVIC_DisableIRQ(self->irqn);
__HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
} else {
// read buffer using interrupts
self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
self->read_buf = m_new(byte, self->read_buf_len << self->char_width);
__HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART);
HAL_NVIC_EnableIRQ(self->irqn);
}
// compute actual baudrate that was configured
// (this formula assumes UART_OVERSAMPLING_16)
uint32_t actual_baudrate = 0;
#if defined(STM32F0)
actual_baudrate = HAL_RCC_GetPCLK1Freq();
#elif defined(STM32F7) || defined(STM32H7)
UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
UART_GETCLOCKSOURCE(&self->uart, clocksource);
switch (clocksource) {
#if defined(STM32H7)
case UART_CLOCKSOURCE_D2PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
case UART_CLOCKSOURCE_D3PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
case UART_CLOCKSOURCE_D2PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
#else
case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break;
#endif
#if defined(STM32H7)
case UART_CLOCKSOURCE_CSI: actual_baudrate = CSI_VALUE; break;
#endif
case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break;
case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break;
#if defined(STM32H7)
case UART_CLOCKSOURCE_PLL2:
case UART_CLOCKSOURCE_PLL3:
#endif
case UART_CLOCKSOURCE_UNDEFINED: break;
}
#else
if (self->uart.Instance == USART1
#if defined(USART6)
|| self->uart.Instance == USART6
#endif
) {
actual_baudrate = HAL_RCC_GetPCLK2Freq();
} else {
actual_baudrate = HAL_RCC_GetPCLK1Freq();
}
#endif
actual_baudrate /= self->uart.Instance->BRR;
// check we could set the baudrate within 5%
uint32_t baudrate_diff;
if (actual_baudrate > init->BaudRate) {
baudrate_diff = actual_baudrate - init->BaudRate;
} else {
baudrate_diff = init->BaudRate - actual_baudrate;
}
init->BaudRate = actual_baudrate; // remember actual baudrate for printing
if (20 * baudrate_diff > init->BaudRate) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate));
}
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the UART busses are:
///
/// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
/// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
/// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
/// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
/// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
int uart_id = 0;
if (MP_OBJ_IS_STR(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_UART1_NAME
} else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
uart_id = PYB_UART_1;
#endif
#ifdef MICROPY_HW_UART2_NAME
} else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
uart_id = PYB_UART_2;
#endif
#ifdef MICROPY_HW_UART3_NAME
} else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
uart_id = PYB_UART_3;
#endif
#ifdef MICROPY_HW_UART4_NAME
} else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
uart_id = PYB_UART_4;
#endif
#ifdef MICROPY_HW_UART5_NAME
} else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
uart_id = PYB_UART_5;
#endif
#ifdef MICROPY_HW_UART6_NAME
} else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
uart_id = PYB_UART_6;
#endif
#ifdef MICROPY_HW_UART7_NAME
} else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) {
uart_id = PYB_UART_7;
#endif
#ifdef MICROPY_HW_UART8_NAME
} else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) {
uart_id = PYB_UART_8;
#endif
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port));
}
} else {
uart_id = mp_obj_get_int(args[0]);
if (!uart_exists(uart_id)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id));
}
}
pyb_uart_obj_t *self;
if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
// create new UART object
self = m_new0(pyb_uart_obj_t, 1);
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
} else {
// reference existing UART object
self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_deinit(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
// get the character to write (might be 9 bits)
uint16_t data = mp_obj_get_int(char_in);
// write the character
int errcode;
if (uart_tx_wait(self, self->timeout)) {
uart_tx_data(self, &data, 1, &errcode);
} else {
errcode = MP_ETIMEDOUT;
}
if (errcode != 0) {
mp_raise_OSError(errcode);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (uart_rx_wait(self, self->timeout)) {
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
#if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register
#else
self->uart.Instance->CR1 |= USART_CR1_SBK;
#endif
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
/// \method read([nbytes])
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
/// \method readline()
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
/// \method readinto(buf[, nbytes])
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
/// \method write(buf)
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) },
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// convert byte size to char size
size >>= self->char_width;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// wait for first char to become available
if (!uart_rx_wait(self, self->timeout)) {
// return EAGAIN error to indicate non-blocking (then read() method returns None)
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// read the data
byte *orig_buf = buf;
for (;;) {
int data = uart_rx_char(self);
if (self->char_width == CHAR_WIDTH_9BIT) {
*(uint16_t*)buf = data;
buf += 2;
} else {
*buf++ = data;
}
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
const byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// wait to be able to write the first character. EAGAIN causes write to return None
if (!uart_tx_wait(self, self->timeout)) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// write the data
size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);
if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
// return number of bytes written, even if there was a timeout
return num_tx << self->char_width;
} else {
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict,
};