micropython/extmod/machine_i2c.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

744 lines
26 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "extmod/modmachine.h"
#define SOFT_I2C_DEFAULT_TIMEOUT_US (50000) // 50ms
#if MICROPY_PY_MACHINE_SOFTI2C
typedef mp_machine_soft_i2c_obj_t machine_i2c_obj_t;
STATIC void mp_hal_i2c_delay(machine_i2c_obj_t *self) {
// We need to use an accurate delay to get acceptable I2C
// speeds (eg 1us should be not much more than 1us).
mp_hal_delay_us_fast(self->us_delay);
}
STATIC void mp_hal_i2c_scl_low(machine_i2c_obj_t *self) {
mp_hal_pin_od_low(self->scl);
}
STATIC int mp_hal_i2c_scl_release(machine_i2c_obj_t *self) {
uint32_t count = self->us_timeout;
mp_hal_pin_od_high(self->scl);
mp_hal_i2c_delay(self);
// For clock stretching, wait for the SCL pin to be released, with timeout.
for (; mp_hal_pin_read(self->scl) == 0 && count; --count) {
mp_hal_delay_us_fast(1);
}
if (count == 0) {
return -MP_ETIMEDOUT;
}
return 0; // success
}
STATIC void mp_hal_i2c_sda_low(machine_i2c_obj_t *self) {
mp_hal_pin_od_low(self->sda);
}
STATIC void mp_hal_i2c_sda_release(machine_i2c_obj_t *self) {
mp_hal_pin_od_high(self->sda);
}
STATIC int mp_hal_i2c_sda_read(machine_i2c_obj_t *self) {
return mp_hal_pin_read(self->sda);
}
STATIC int mp_hal_i2c_start(machine_i2c_obj_t *self) {
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
mp_hal_i2c_sda_low(self);
mp_hal_i2c_delay(self);
return 0; // success
}
STATIC int mp_hal_i2c_stop(machine_i2c_obj_t *self) {
mp_hal_i2c_delay(self);
mp_hal_i2c_sda_low(self);
mp_hal_i2c_delay(self);
int ret = mp_hal_i2c_scl_release(self);
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
return ret;
}
STATIC void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) {
self->us_delay = 500000 / freq;
if (self->us_delay == 0) {
self->us_delay = 1;
}
mp_hal_pin_open_drain(self->scl);
mp_hal_pin_open_drain(self->sda);
mp_hal_i2c_stop(self); // ignore error
}
// return value:
// 0 - byte written and ack received
// 1 - byte written and nack received
// <0 - error, with errno being the negative of the return value
STATIC int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) {
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
for (int i = 7; i >= 0; i--) {
if ((val >> i) & 1) {
mp_hal_i2c_sda_release(self);
} else {
mp_hal_i2c_sda_low(self);
}
mp_hal_i2c_delay(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
mp_hal_i2c_sda_release(self);
return ret;
}
mp_hal_i2c_scl_low(self);
}
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
int ack = mp_hal_i2c_sda_read(self);
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
return ack;
}
// return value:
// 0 - success
// <0 - error, with errno being the negative of the return value
STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack) {
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
mp_hal_i2c_delay(self);
uint8_t data = 0;
for (int i = 7; i >= 0; i--) {
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
data = (data << 1) | mp_hal_i2c_sda_read(self);
mp_hal_i2c_scl_low(self);
mp_hal_i2c_delay(self);
}
*val = data;
// send ack/nack bit
if (!nack) {
mp_hal_i2c_sda_low(self);
}
mp_hal_i2c_delay(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
mp_hal_i2c_sda_release(self);
return ret;
}
mp_hal_i2c_scl_low(self);
mp_hal_i2c_sda_release(self);
return 0; // success
}
// return value:
// >=0 - success; for read it's 0, for write it's number of acks received
// <0 - error, with errno being the negative of the return value
int mp_machine_soft_i2c_transfer(mp_obj_base_t *self_in, uint16_t addr, size_t n, mp_machine_i2c_buf_t *bufs, unsigned int flags) {
machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in;
// start the I2C transaction
int ret = mp_hal_i2c_start(self);
if (ret != 0) {
return ret;
}
// write the slave address
ret = mp_hal_i2c_write_byte(self, (addr << 1) | (flags & MP_MACHINE_I2C_FLAG_READ));
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, release the bus cleanly
mp_hal_i2c_stop(self);
return -MP_ENODEV;
}
int transfer_ret = 0;
for (; n--; ++bufs) {
size_t len = bufs->len;
uint8_t *buf = bufs->buf;
if (flags & MP_MACHINE_I2C_FLAG_READ) {
// read bytes from the slave into the given buffer(s)
while (len--) {
ret = mp_hal_i2c_read_byte(self, buf++, (n | len) == 0);
if (ret != 0) {
return ret;
}
}
} else {
// write bytes from the given buffer(s) to the slave
while (len--) {
ret = mp_hal_i2c_write_byte(self, *buf++);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, stop sending
n = 0;
break;
}
++transfer_ret; // count the number of acks
}
}
}
// finish the I2C transaction
if (flags & MP_MACHINE_I2C_FLAG_STOP) {
ret = mp_hal_i2c_stop(self);
if (ret != 0) {
return ret;
}
}
return transfer_ret;
}
#endif // MICROPY_PY_MACHINE_SOFTI2C
/******************************************************************************/
// Generic helper functions
#if MICROPY_PY_MACHINE_I2C || MICROPY_PY_MACHINE_SOFTI2C
// For use by ports that require a single buffer of data for a read/write transfer
int mp_machine_i2c_transfer_adaptor(mp_obj_base_t *self, uint16_t addr, size_t n, mp_machine_i2c_buf_t *bufs, unsigned int flags) {
size_t len;
uint8_t *buf;
if (n == 1) {
// Use given single buffer
len = bufs[0].len;
buf = bufs[0].buf;
} else {
// Combine buffers into a single one
len = 0;
for (size_t i = 0; i < n; ++i) {
len += bufs[i].len;
}
buf = m_new(uint8_t, len);
if (!(flags & MP_MACHINE_I2C_FLAG_READ)) {
len = 0;
for (size_t i = 0; i < n; ++i) {
memcpy(buf + len, bufs[i].buf, bufs[i].len);
len += bufs[i].len;
}
}
}
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
int ret = i2c_p->transfer_single(self, addr, len, buf, flags);
if (n > 1) {
if (flags & MP_MACHINE_I2C_FLAG_READ) {
// Copy data from single buffer to individual ones
len = 0;
for (size_t i = 0; i < n; ++i) {
memcpy(bufs[i].buf, buf + len, bufs[i].len);
len += bufs[i].len;
}
}
m_del(uint8_t, buf, len);
}
return ret;
}
STATIC int mp_machine_i2c_readfrom(mp_obj_base_t *self, uint16_t addr, uint8_t *dest, size_t len, bool stop) {
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
mp_machine_i2c_buf_t buf = {.len = len, .buf = dest};
unsigned int flags = MP_MACHINE_I2C_FLAG_READ | (stop ? MP_MACHINE_I2C_FLAG_STOP : 0);
return i2c_p->transfer(self, addr, 1, &buf, flags);
}
STATIC int mp_machine_i2c_writeto(mp_obj_base_t *self, uint16_t addr, const uint8_t *src, size_t len, bool stop) {
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
mp_machine_i2c_buf_t buf = {.len = len, .buf = (uint8_t *)src};
unsigned int flags = stop ? MP_MACHINE_I2C_FLAG_STOP : 0;
return i2c_p->transfer(self, addr, 1, &buf, flags);
}
/******************************************************************************/
// MicroPython bindings for generic machine.I2C
STATIC mp_obj_t machine_i2c_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->init == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported"));
}
i2c_p->init(self, n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_init);
STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) {
mp_obj_base_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_t list = mp_obj_new_list(0, NULL);
// 7-bit addresses 0b0000xxx and 0b1111xxx are reserved
for (int addr = 0x08; addr < 0x78; ++addr) {
int ret = mp_machine_i2c_writeto(self, addr, NULL, 0, true);
if (ret == 0) {
mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
}
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK
#endif
}
return list;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan);
STATIC mp_obj_t machine_i2c_start(mp_obj_t self_in) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->start == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported"));
}
int ret = i2c_p->start(self);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_start_obj, machine_i2c_start);
STATIC mp_obj_t machine_i2c_stop(mp_obj_t self_in) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->stop == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported"));
}
int ret = i2c_p->stop(self);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_stop_obj, machine_i2c_stop);
STATIC mp_obj_t machine_i2c_readinto(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->read == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported"));
}
// get the buffer to read into
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE);
// work out if we want to send a nack at the end
bool nack = (n_args == 2) ? true : mp_obj_is_true(args[2]);
// do the read
int ret = i2c_p->read(self, bufinfo.buf, bufinfo.len, nack);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readinto_obj, 2, 3, machine_i2c_readinto);
STATIC mp_obj_t machine_i2c_write(mp_obj_t self_in, mp_obj_t buf_in) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->write == NULL) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported"));
}
// get the buffer to write from
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
// do the write
int ret = i2c_p->write(self, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
// return number of acks received
return MP_OBJ_NEW_SMALL_INT(ret);
}
MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_write_obj, machine_i2c_write);
STATIC mp_obj_t machine_i2c_readfrom(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_int_t addr = mp_obj_get_int(args[1]);
vstr_t vstr;
vstr_init_len(&vstr, mp_obj_get_int(args[2]));
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = mp_machine_i2c_readfrom(self, addr, (uint8_t *)vstr.buf, vstr.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_obj_new_bytes_from_vstr(&vstr);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_obj, 3, 4, machine_i2c_readfrom);
STATIC mp_obj_t machine_i2c_readfrom_into(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_int_t addr = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = mp_machine_i2c_readfrom(self, addr, bufinfo.buf, bufinfo.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_into_obj, 3, 4, machine_i2c_readfrom_into);
STATIC mp_obj_t machine_i2c_writeto(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_int_t addr = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = mp_machine_i2c_writeto(self, addr, bufinfo.buf, bufinfo.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
// return number of acks received
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writeto_obj, 3, 4, machine_i2c_writeto);
STATIC mp_obj_t machine_i2c_writevto(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]);
mp_int_t addr = mp_obj_get_int(args[1]);
// Get the list of data buffer(s) to write
size_t nitems;
const mp_obj_t *items;
mp_obj_get_array(args[2], &nitems, (mp_obj_t **)&items);
// Get the stop argument
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
// Extract all buffer data, skipping zero-length buffers
size_t alloc = nitems == 0 ? 1 : nitems;
size_t nbufs = 0;
mp_machine_i2c_buf_t *bufs = mp_local_alloc(alloc * sizeof(mp_machine_i2c_buf_t));
for (; nitems--; ++items) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(*items, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len > 0) {
bufs[nbufs].len = bufinfo.len;
bufs[nbufs++].buf = bufinfo.buf;
}
}
// Make sure there is at least one buffer, empty if needed
if (nbufs == 0) {
bufs[0].len = 0;
bufs[0].buf = NULL;
nbufs = 1;
}
// Do the I2C transfer
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
int ret = i2c_p->transfer(self, addr, nbufs, bufs, stop ? MP_MACHINE_I2C_FLAG_STOP : 0);
mp_local_free(bufs);
if (ret < 0) {
mp_raise_OSError(-ret);
}
// Return number of acks received
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writevto_obj, 3, 4, machine_i2c_writevto);
STATIC size_t fill_memaddr_buf(uint8_t *memaddr_buf, uint32_t memaddr, uint8_t addrsize) {
size_t memaddr_len = 0;
if ((addrsize & 7) != 0 || addrsize > 32) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid addrsize"));
}
for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
memaddr_buf[memaddr_len++] = memaddr >> i;
}
return memaddr_len;
}
STATIC int read_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, uint8_t *buf, size_t len) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in);
// Create buffer with memory address
uint8_t memaddr_buf[4];
size_t memaddr_len = fill_memaddr_buf(&memaddr_buf[0], memaddr, addrsize);
#if MICROPY_PY_MACHINE_I2C_TRANSFER_WRITE1
// The I2C transfer function may support the MP_MACHINE_I2C_FLAG_WRITE1 option
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
if (i2c_p->transfer_supports_write1) {
// Create partial write and read buffers
mp_machine_i2c_buf_t bufs[2] = {
{.len = memaddr_len, .buf = memaddr_buf},
{.len = len, .buf = buf},
};
// Do write+read I2C transfer
return i2c_p->transfer(self, addr, 2, bufs,
MP_MACHINE_I2C_FLAG_WRITE1 | MP_MACHINE_I2C_FLAG_READ | MP_MACHINE_I2C_FLAG_STOP);
}
#endif
int ret = mp_machine_i2c_writeto(self, addr, memaddr_buf, memaddr_len, false);
if (ret != memaddr_len) {
// must generate STOP
mp_machine_i2c_writeto(self, addr, NULL, 0, true);
return ret;
}
return mp_machine_i2c_readfrom(self, addr, buf, len, true);
}
STATIC int write_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, const uint8_t *buf, size_t len) {
mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in);
// Create buffer with memory address
uint8_t memaddr_buf[4];
size_t memaddr_len = fill_memaddr_buf(&memaddr_buf[0], memaddr, addrsize);
// Create partial write buffers
mp_machine_i2c_buf_t bufs[2] = {
{.len = memaddr_len, .buf = memaddr_buf},
{.len = len, .buf = (uint8_t *)buf},
};
// Do I2C transfer
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol);
return i2c_p->transfer(self, addr, 2, bufs, MP_MACHINE_I2C_FLAG_STOP);
}
STATIC const mp_arg_t machine_i2c_mem_allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_arg, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};
STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize };
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
// create the buffer to store data into
vstr_t vstr;
vstr_init_len(&vstr, mp_obj_get_int(args[ARG_n].u_obj));
// do the transfer
int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, (uint8_t *)vstr.buf, vstr.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_obj_new_bytes_from_vstr(&vstr);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem);
STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
// get the buffer to store data into
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE);
// do the transfer
int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into);
STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
// get the buffer to write the data from
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ);
// do the transfer
int ret = write_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem);
STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) },
// primitive I2C operations
{ MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&machine_i2c_start_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&machine_i2c_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&machine_i2c_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_i2c_write_obj) },
// standard bus operations
{ MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) },
{ MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) },
{ MP_ROM_QSTR(MP_QSTR_writevto), MP_ROM_PTR(&machine_i2c_writevto_obj) },
// memory operations
{ MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) },
{ MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) },
};
MP_DEFINE_CONST_DICT(mp_machine_i2c_locals_dict, machine_i2c_locals_dict_table);
#endif // MICROPY_PY_MACHINE_I2C || MICROPY_PY_MACHINE_SOFTI2C
/******************************************************************************/
// Implementation of soft I2C
#if MICROPY_PY_MACHINE_SOFTI2C
STATIC void mp_machine_soft_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_machine_soft_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SoftI2C(scl=" MP_HAL_PIN_FMT ", sda=" MP_HAL_PIN_FMT ", freq=%u)",
mp_hal_pin_name(self->scl), mp_hal_pin_name(self->sda), 500000 / self->us_delay);
}
STATIC void mp_machine_soft_i2c_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_scl, ARG_sda, ARG_freq, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SOFT_I2C_DEFAULT_TIMEOUT_US} },
};
mp_machine_soft_i2c_obj_t *self = (mp_machine_soft_i2c_obj_t *)self_in;
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj);
self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj);
self->us_timeout = args[ARG_timeout].u_int;
mp_hal_i2c_init(self, args[ARG_freq].u_int);
}
STATIC mp_obj_t mp_machine_soft_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// create new soft I2C object
machine_i2c_obj_t *self = mp_obj_malloc(machine_i2c_obj_t, &mp_machine_soft_i2c_type);
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_soft_i2c_init(&self->base, n_args, args, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
int mp_machine_soft_i2c_read(mp_obj_base_t *self_in, uint8_t *dest, size_t len, bool nack) {
machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in;
while (len--) {
int ret = mp_hal_i2c_read_byte(self, dest++, nack && (len == 0));
if (ret != 0) {
return ret;
}
}
return 0; // success
}
int mp_machine_soft_i2c_write(mp_obj_base_t *self_in, const uint8_t *src, size_t len) {
machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in;
int num_acks = 0;
while (len--) {
int ret = mp_hal_i2c_write_byte(self, *src++);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, stop sending
break;
}
++num_acks;
}
return num_acks;
}
STATIC const mp_machine_i2c_p_t mp_machine_soft_i2c_p = {
.init = mp_machine_soft_i2c_init,
.start = (int (*)(mp_obj_base_t *))mp_hal_i2c_start,
.stop = (int (*)(mp_obj_base_t *))mp_hal_i2c_stop,
.read = mp_machine_soft_i2c_read,
.write = mp_machine_soft_i2c_write,
.transfer = mp_machine_soft_i2c_transfer,
};
MP_DEFINE_CONST_OBJ_TYPE(
mp_machine_soft_i2c_type,
MP_QSTR_SoftI2C,
MP_TYPE_FLAG_NONE,
make_new, mp_machine_soft_i2c_make_new,
print, mp_machine_soft_i2c_print,
protocol, &mp_machine_soft_i2c_p,
locals_dict, &mp_machine_i2c_locals_dict
);
#endif // MICROPY_PY_MACHINE_SOFTI2C