micropython/ports/stm32/pyb_i2c.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1106 lines
38 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "irq.h"
#include "pin.h"
#include "bufhelper.h"
#include "dma.h"
#include "i2c.h"
#if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices. At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus. They can be initialised
/// when created, or initialised later on:
///
/// from pyb import I2C
///
/// i2c = I2C(1) # create on bus 1
/// i2c = I2C(1, I2C.CONTROLLER) # create and init as a controller
/// i2c.init(I2C.CONTROLLER, baudrate=20000) # init as a controller
/// i2c.init(I2C.PERIPHERAL, addr=0x42) # init as a peripheral with given address
/// i2c.deinit() # turn off the I2C unit
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for peripheral are send and recv:
///
/// i2c.send('abc') # send 3 bytes
/// i2c.send(0x42) # send a single byte, given by the number
/// data = i2c.recv(3) # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
/// data = bytearray(3) # create a buffer
/// i2c.recv(data) # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
/// i2c.send(b'123', timeout=2000) # timout after 2 seconds
///
/// A controller must specify the recipient's address:
///
/// i2c.init(I2C.CONTROLLER)
/// i2c.send('123', 0x42) # send 3 bytes to peripheral with address 0x42
/// i2c.send(b'456', addr=0x42) # keyword for address
///
/// Master also has other methods:
///
/// i2c.is_ready(0x42) # check if peripheral 0x42 is ready
/// i2c.scan() # scan for peripherals on the bus, returning
/// # a list of valid addresses
/// i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of peripheral 0x42,
/// # starting at address 2 in the peripheral
/// i2c.mem_write('abc', 0x42, 2, timeout=1000)
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE (1)
#define PYB_I2C_SPEED_STANDARD (100000L)
#define PYB_I2C_SPEED_FULL (400000L)
#define PYB_I2C_SPEED_FAST (1000000L)
#if defined(MICROPY_HW_I2C1_SCL)
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C2_SCL)
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C4_SCL)
I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL};
#endif
STATIC bool pyb_i2c_use_dma[4];
const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if defined(MICROPY_HW_I2C1_SCL)
{{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]},
#else
{{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_I2C2_SCL)
{{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]},
#else
{{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_I2C3_SCL)
{{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]},
#else
{{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
#endif
#if defined(MICROPY_HW_I2C4_SCL)
{{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]},
#else
{{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
#endif
};
#if defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4)
// The STM32F0, F3, F7, H7 and L4 use a TIMINGR register rather than ClockSpeed and
// DutyCycle.
#define PYB_I2C_TIMINGR (1)
#if defined(STM32F745xx) || defined(STM32F746xx)
// The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant
// defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0x40912732}, \
{PYB_I2C_SPEED_FULL, 0x10911823}, \
{PYB_I2C_SPEED_FAST, 0x00611116}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)
#elif defined(STM32F722xx) || defined(STM32F723xx) \
|| defined(STM32F732xx) || defined(STM32F733xx) \
|| defined(STM32F765xx) || defined(STM32F767xx) \
|| defined(STM32F769xx)
// These timing values are for f_I2CCLK=54MHz and are only approximate
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0xb0420f13}, \
{PYB_I2C_SPEED_FULL, 0x70330309}, \
{PYB_I2C_SPEED_FAST, 0x50100103}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)
#elif defined(STM32G0)
// generated using CubeMX
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0x10707DBC}, \
{PYB_I2C_SPEED_FULL, 0x00602173}, \
{PYB_I2C_SPEED_FAST, 0x00300B29}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)
#elif defined(STM32G4)
// timing input depends on PLL
// for now: 170MHz sysclock, PCLK 10.625 MHz
// using PCLOCK
// generated using CubeMX
#if defined(STM32G431xx) || defined(STM32G441xx)
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
}
#else
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
{PYB_I2C_SPEED_STANDARD, 0x30A0A7FB}, \
}
#endif
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_STANDARD)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_STANDARD)
#elif defined(STM32H7)
// I2C TIMINGs obtained from the STHAL examples.
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
{PYB_I2C_SPEED_STANDARD, 0x40604E73}, \
{PYB_I2C_SPEED_FULL, 0x00901954}, \
{PYB_I2C_SPEED_FAST, 0x10810915}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)
#elif defined(STM32L4)
// The value 0x90112626 was obtained from the DISCOVERY_I2C1_TIMING constant
// defined in the STM32L4Cube file Drivers/BSP/STM32L476G-Discovery/stm32l476g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{PYB_I2C_SPEED_STANDARD, 0x90112626}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_STANDARD)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_STANDARD)
#else
#error "no I2C timings for this MCU"
#endif
STATIC const struct {
uint32_t baudrate;
uint32_t timing;
} pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING;
#define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing)
STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) {
init->Timing = pyb_i2c_baudrate_timing[i].timing;
return;
}
}
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("unsupported I2C baudrate: %u"), baudrate);
}
uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) {
for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
if (pyb_i2c_baudrate_timing[i].timing == i2c->Init.Timing) {
return pyb_i2c_baudrate_timing[i].baudrate;
}
}
return 0;
}
#else
#define PYB_I2C_TIMINGR (0)
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FULL)
STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
init->ClockSpeed = baudrate;
init->DutyCycle = I2C_DUTYCYCLE_16_9;
}
uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) {
uint32_t pfreq = i2c->Instance->CR2 & 0x3f;
uint32_t ccr = i2c->Instance->CCR & 0xfff;
if (i2c->Instance->CCR & 0x8000) {
// Fast mode, assume duty cycle of 16/9
return pfreq * 40000 / ccr;
} else {
// Standard mode
return pfreq * 500000 / ccr;
}
}
#endif
void i2c_init0(void) {
// Initialise the I2C handles.
// The structs live on the BSS so all other fields will be zero after a reset.
#if defined(MICROPY_HW_I2C1_SCL)
I2CHandle1.Instance = I2C1;
#endif
#if defined(MICROPY_HW_I2C2_SCL)
I2CHandle2.Instance = I2C2;
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2CHandle3.Instance = I2C3;
#endif
#if defined(MICROPY_HW_I2C4_SCL)
I2CHandle4.Instance = I2C4;
#endif
}
void pyb_i2c_init(I2C_HandleTypeDef *i2c) {
int i2c_unit;
const pin_obj_t *scl_pin;
const pin_obj_t *sda_pin;
if (0) {
#if defined(MICROPY_HW_I2C1_SCL)
} else if (i2c == &I2CHandle1) {
i2c_unit = 1;
scl_pin = MICROPY_HW_I2C1_SCL;
sda_pin = MICROPY_HW_I2C1_SDA;
__HAL_RCC_I2C1_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_I2C2_SCL)
} else if (i2c == &I2CHandle2) {
i2c_unit = 2;
scl_pin = MICROPY_HW_I2C2_SCL;
sda_pin = MICROPY_HW_I2C2_SDA;
__HAL_RCC_I2C2_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_I2C3_SCL)
} else if (i2c == &I2CHandle3) {
i2c_unit = 3;
scl_pin = MICROPY_HW_I2C3_SCL;
sda_pin = MICROPY_HW_I2C3_SDA;
__HAL_RCC_I2C3_CLK_ENABLE();
#endif
#if defined(MICROPY_HW_I2C4_SCL)
} else if (i2c == &I2CHandle4) {
i2c_unit = 4;
scl_pin = MICROPY_HW_I2C4_SCL;
sda_pin = MICROPY_HW_I2C4_SDA;
__HAL_RCC_I2C4_CLK_ENABLE();
#endif
} else {
// I2C does not exist for this board (shouldn't get here, should be checked by caller)
return;
}
// init the GPIO lines
uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN;
uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines
mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit);
mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit);
// init the I2C device
if (HAL_I2C_Init(i2c) != HAL_OK) {
// init error
// TODO should raise an exception, but this function is not necessarily going to be
// called via Python, so may not be properly wrapped in an NLR handler
printf("OSError: HAL_I2C_Init failed\n");
return;
}
// invalidate the DMA channels so they are initialised on first use
const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1];
dma_invalidate_channel(self->tx_dma_descr);
dma_invalidate_channel(self->rx_dma_descr);
if (0) {
#if defined(MICROPY_HW_I2C1_SCL)
} else if (i2c->Instance == I2C1) {
HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C2_SCL)
} else if (i2c->Instance == I2C2) {
HAL_NVIC_EnableIRQ(I2C2_EV_IRQn);
HAL_NVIC_EnableIRQ(I2C2_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C3_SCL)
} else if (i2c->Instance == I2C3) {
HAL_NVIC_EnableIRQ(I2C3_EV_IRQn);
HAL_NVIC_EnableIRQ(I2C3_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C4_SCL)
} else if (i2c->Instance == I2C4) {
HAL_NVIC_EnableIRQ(I2C4_EV_IRQn);
HAL_NVIC_EnableIRQ(I2C4_ER_IRQn);
#endif
}
}
void i2c_deinit(I2C_HandleTypeDef *i2c) {
HAL_I2C_DeInit(i2c);
if (0) {
#if defined(MICROPY_HW_I2C1_SCL)
} else if (i2c->Instance == I2C1) {
__HAL_RCC_I2C1_FORCE_RESET();
__HAL_RCC_I2C1_RELEASE_RESET();
__HAL_RCC_I2C1_CLK_DISABLE();
HAL_NVIC_DisableIRQ(I2C1_EV_IRQn);
HAL_NVIC_DisableIRQ(I2C1_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C2_SCL)
} else if (i2c->Instance == I2C2) {
__HAL_RCC_I2C2_FORCE_RESET();
__HAL_RCC_I2C2_RELEASE_RESET();
__HAL_RCC_I2C2_CLK_DISABLE();
HAL_NVIC_DisableIRQ(I2C2_EV_IRQn);
HAL_NVIC_DisableIRQ(I2C2_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C3_SCL)
} else if (i2c->Instance == I2C3) {
__HAL_RCC_I2C3_FORCE_RESET();
__HAL_RCC_I2C3_RELEASE_RESET();
__HAL_RCC_I2C3_CLK_DISABLE();
HAL_NVIC_DisableIRQ(I2C3_EV_IRQn);
HAL_NVIC_DisableIRQ(I2C3_ER_IRQn);
#endif
#if defined(MICROPY_HW_I2C4_SCL)
} else if (i2c->Instance == I2C4) {
__HAL_RCC_I2C4_FORCE_RESET();
__HAL_RCC_I2C4_RELEASE_RESET();
__HAL_RCC_I2C4_CLK_DISABLE();
HAL_NVIC_DisableIRQ(I2C4_EV_IRQn);
HAL_NVIC_DisableIRQ(I2C4_ER_IRQn);
#endif
}
}
void pyb_i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) {
I2C_InitTypeDef *init = &self->i2c->Init;
init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
init->GeneralCallMode = I2C_GENERALCALL_DISABLED;
init->NoStretchMode = I2C_NOSTRETCH_DISABLE;
init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
init->OwnAddress2 = 0; // unused
if (freq != -1) {
i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX));
}
*self->use_dma = false;
// init the I2C bus
i2c_deinit(self->i2c);
pyb_i2c_init(self->i2c);
}
STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) {
// wait for bus-busy flag to be cleared, with a timeout
for (int timeout = 50; timeout > 0; --timeout) {
if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) {
// stop bit was generated and bus is back to normal
return;
}
mp_hal_delay_ms(1);
}
// bus was/is busy, need to reset the peripheral to get it to work again
i2c_deinit(i2c);
pyb_i2c_init(i2c);
}
void i2c_ev_irq_handler(mp_uint_t i2c_id) {
I2C_HandleTypeDef *hi2c;
switch (i2c_id) {
#if defined(MICROPY_HW_I2C1_SCL)
case 1:
hi2c = &I2CHandle1;
break;
#endif
#if defined(MICROPY_HW_I2C2_SCL)
case 2:
hi2c = &I2CHandle2;
break;
#endif
#if defined(MICROPY_HW_I2C3_SCL)
case 3:
hi2c = &I2CHandle3;
break;
#endif
#if defined(MICROPY_HW_I2C4_SCL)
case 4:
hi2c = &I2CHandle4;
break;
#endif
default:
return;
}
#if defined(STM32F4)
if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) {
if (hi2c->XferCount != 0U) {
hi2c->Instance->DR = *hi2c->pBuffPtr++;
hi2c->XferCount--;
} else {
__HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
if (hi2c->XferOptions != I2C_FIRST_FRAME) {
hi2c->Instance->CR1 |= I2C_CR1_STOP;
}
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->State = HAL_I2C_STATE_READY;
}
}
#else
// if not an F4 MCU, use the HAL's IRQ handler
HAL_I2C_EV_IRQHandler(hi2c);
#endif
}
void i2c_er_irq_handler(mp_uint_t i2c_id) {
I2C_HandleTypeDef *hi2c;
switch (i2c_id) {
#if defined(MICROPY_HW_I2C1_SCL)
case 1:
hi2c = &I2CHandle1;
break;
#endif
#if defined(MICROPY_HW_I2C2_SCL)
case 2:
hi2c = &I2CHandle2;
break;
#endif
#if defined(MICROPY_HW_I2C3_SCL)
case 3:
hi2c = &I2CHandle3;
break;
#endif
#if defined(MICROPY_HW_I2C4_SCL)
case 4:
hi2c = &I2CHandle4;
break;
#endif
default:
return;
}
#if defined(STM32F4)
uint32_t sr1 = hi2c->Instance->SR1;
// I2C Bus error
if (sr1 & I2C_FLAG_BERR) {
hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
}
// I2C Arbitration Loss error
if (sr1 & I2C_FLAG_ARLO) {
hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
}
// I2C Acknowledge failure
if (sr1 & I2C_FLAG_AF) {
hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
SET_BIT(hi2c->Instance->CR1, I2C_CR1_STOP);
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
}
// I2C Over-Run/Under-Run
if (sr1 & I2C_FLAG_OVR) {
hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
}
#else
// if not an F4 MCU, use the HAL's IRQ handler
HAL_I2C_ER_IRQHandler(hi2c);
#endif
}
STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) {
// Note: we can't use WFI to idle in this loop because the DMA completion
// interrupt may occur before the WFI. Hence we miss it and have to wait
// until the next sys-tick (up to 1ms).
uint32_t start = HAL_GetTick();
while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) {
if (HAL_GetTick() - start >= timeout) {
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/******************************************************************************/
/* MicroPython bindings */
static inline bool in_master_mode(pyb_i2c_obj_t *self) {
return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS;
}
STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint i2c_num = 0;
if (0) {
}
#if defined(MICROPY_HW_I2C1_SCL)
else if (self->i2c->Instance == I2C1) {
i2c_num = 1;
}
#endif
#if defined(MICROPY_HW_I2C2_SCL)
else if (self->i2c->Instance == I2C2) {
i2c_num = 2;
}
#endif
#if defined(MICROPY_HW_I2C3_SCL)
else if (self->i2c->Instance == I2C3) {
i2c_num = 3;
}
#endif
#if defined(MICROPY_HW_I2C4_SCL)
else if (self->i2c->Instance == I2C4) {
i2c_num = 4;
}
#endif
if (self->i2c->State == HAL_I2C_STATE_RESET) {
mp_printf(print, "I2C(%u)", i2c_num);
} else {
if (in_master_mode(self)) {
mp_printf(print, "I2C(%u, I2C.CONTROLLER, baudrate=%u"
#if PYB_I2C_TIMINGR
", timingr=0x%08x"
#endif
")", i2c_num, pyb_i2c_get_baudrate(self->i2c)
#if PYB_I2C_TIMINGR
, self->i2c->Init.Timing
#endif
);
} else {
mp_printf(print, "I2C(%u, I2C.PERIPHERAL, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
}
}
}
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
/// - `mode` must be either `I2C.CONTROLLER` or `I2C.PERIPHERAL`
/// - `addr` is the 7-bit address (only sensible for a peripheral)
/// - `baudrate` is the SCL clock rate (only sensible for a controller)
/// - `gencall` is whether to support general call mode
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_INT, {.u_int = PYB_I2C_MASTER} },
{ MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} },
{ MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_dma, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
#if PYB_I2C_TIMINGR
2019-12-27 11:46:43 +00:00
{ MP_QSTR_timingr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
#endif
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the I2C configuration values
I2C_InitTypeDef *init = &self->i2c->Init;
if (args[0].u_int == PYB_I2C_MASTER) {
// use a special address to indicate we are a controller
init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
} else {
init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
}
// Set baudrate or timing value (if supported)
#if PYB_I2C_TIMINGR
if (args[5].u_obj != mp_const_none) {
init->Timing = mp_obj_get_int_truncated(args[5].u_obj);
} else
#endif
{
i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX));
}
init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
init->OwnAddress2 = 0; // unused
init->NoStretchMode = I2C_NOSTRETCH_DISABLE;
*self->use_dma = args[4].u_bool;
// init the I2C bus
i2c_deinit(self->i2c);
pyb_i2c_init(self->i2c);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus. `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the I2C buses are:
///
/// - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
/// - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get I2C object
int i2c_id = i2c_find_peripheral(args[0]);
const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1];
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(i2c_obj);
}
STATIC mp_obj_t pyb_i2c_init_(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_i2c_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init_);
/// \method deinit()
/// Turn off the I2C bus.
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
i2c_deinit(self->i2c);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address. Only valid when in controller mode.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!in_master_mode(self)) {
mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller"));
}
mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
for (int i = 0; i < 10; i++) {
HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
if (status == HAL_OK) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);
/// \method scan()
/// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond.
/// Only valid when in controller mode.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!in_master_mode(self)) {
mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller"));
}
mp_obj_t list = mp_obj_new_list(0, NULL);
for (uint addr = 0x08; addr <= 0x77; addr++) {
HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 1, 200);
if (status == HAL_OK) {
mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
}
}
return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
/// - `send` is the data to send (an integer to send, or a buffer object)
/// - `addr` is the address to send to (only required in controller mode)
/// - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
STATIC mp_obj_t pyb_i2c_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// if option is set and IRQs are enabled then we can use DMA
bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;
DMA_HandleTypeDef tx_dma;
if (use_dma) {
dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c);
self->i2c->hdmatx = &tx_dma;
self->i2c->hdmarx = NULL;
}
// send the data
HAL_StatusTypeDef status;
if (in_master_mode(self)) {
if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
if (use_dma) {
dma_deinit(self->tx_dma_descr);
}
mp_raise_TypeError(MP_ERROR_TEXT("addr argument required"));
}
mp_uint_t i2c_addr = args[1].u_int << 1;
if (!use_dma) {
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
} else {
MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
}
} else {
if (!use_dma) {
status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
} else {
MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
}
}
// if we used DMA, wait for it to finish
if (use_dma) {
if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
}
dma_deinit(self->tx_dma_descr);
}
if (status != HAL_OK) {
i2c_reset_after_error(self->i2c);
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);
/// \method recv(recv, addr=0x00, timeout=5000)
///
/// Receive data on the bus:
///
/// - `recv` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes
/// - `addr` is the address to receive from (only required in controller mode)
/// - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_i2c_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// if option is set and IRQs are enabled then we can use DMA
bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;
DMA_HandleTypeDef rx_dma;
if (use_dma) {
dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c);
self->i2c->hdmatx = NULL;
self->i2c->hdmarx = &rx_dma;
}
// receive the data
HAL_StatusTypeDef status;
if (in_master_mode(self)) {
if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
mp_raise_TypeError(MP_ERROR_TEXT("addr argument required"));
}
mp_uint_t i2c_addr = args[1].u_int << 1;
if (!use_dma) {
status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len, args[2].u_int);
} else {
MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len);
}
} else {
if (!use_dma) {
status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t *)vstr.buf, vstr.len, args[2].u_int);
} else {
MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t *)vstr.buf, vstr.len);
}
}
// if we used DMA, wait for it to finish
if (use_dma) {
if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
}
dma_deinit(self->rx_dma_descr);
}
if (status != HAL_OK) {
i2c_reset_after_error(self->i2c);
mp_hal_raise(status);
}
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Read from the memory of an I2C device:
///
/// - `data` can be an integer or a buffer to read into
/// - `addr` is the I2C device address
/// - `memaddr` is the memory location within the I2C device
/// - `timeout` is the timeout in milliseconds to wait for the read
/// - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns the read data.
/// This is only valid in controller mode.
STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
{ MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};
STATIC mp_obj_t pyb_i2c_mem_read(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
if (!in_master_mode(self)) {
mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller"));
}
// get the buffer to read into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// get the addresses
mp_uint_t i2c_addr = args[1].u_int << 1;
mp_uint_t mem_addr = args[2].u_int;
// determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
if (args[4].u_int != 8) {
mem_addr_size = I2C_MEMADD_SIZE_16BIT;
}
// if option is set and IRQs are enabled then we can use DMA
bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;
HAL_StatusTypeDef status;
if (!use_dma) {
status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len, args[3].u_int);
} else {
DMA_HandleTypeDef rx_dma;
dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c);
self->i2c->hdmatx = NULL;
self->i2c->hdmarx = &rx_dma;
MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len);
if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
}
dma_deinit(self->rx_dma_descr);
}
if (status != HAL_OK) {
i2c_reset_after_error(self->i2c);
mp_hal_raise(status);
}
// return the read data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Write to the memory of an I2C device:
///
/// - `data` can be an integer or a buffer to write from
/// - `addr` is the I2C device address
/// - `memaddr` is the memory location within the I2C device
/// - `timeout` is the timeout in milliseconds to wait for the write
/// - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns `None`.
/// This is only valid in controller mode.
STATIC mp_obj_t pyb_i2c_mem_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args (same as mem_read)
pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
if (!in_master_mode(self)) {
mp_raise_TypeError(MP_ERROR_TEXT("I2C must be a controller"));
}
// get the buffer to write from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// get the addresses
mp_uint_t i2c_addr = args[1].u_int << 1;
mp_uint_t mem_addr = args[2].u_int;
// determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
if (args[4].u_int != 8) {
mem_addr_size = I2C_MEMADD_SIZE_16BIT;
}
// if option is set and IRQs are enabled then we can use DMA
bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;
HAL_StatusTypeDef status;
if (!use_dma) {
status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
} else {
DMA_HandleTypeDef tx_dma;
dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c);
self->i2c->hdmatx = &tx_dma;
self->i2c->hdmarx = NULL;
MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
}
dma_deinit(self->tx_dma_descr);
}
if (status != HAL_OK) {
i2c_reset_after_error(self->i2c);
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) },
{ MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) },
// class constants
/// \constant CONTROLLER - for initialising the bus to controller mode
/// \constant PERIPHERAL - for initialising the bus to peripheral mode
{ MP_ROM_QSTR(MP_QSTR_CONTROLLER), MP_ROM_INT(PYB_I2C_MASTER) },
{ MP_ROM_QSTR(MP_QSTR_PERIPHERAL), MP_ROM_INT(PYB_I2C_SLAVE) },
// TODO - remove MASTER/SLAVE when CONTROLLER/PERIPHERAL gain wide adoption
{ MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) },
{ MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);
const mp_obj_type_t pyb_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.print = pyb_i2c_print,
.make_new = pyb_i2c_make_new,
.locals_dict = (mp_obj_dict_t *)&pyb_i2c_locals_dict,
};
#endif // MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C