2014-01-07 17:14:05 +00:00
|
|
|
# do 1 iteration of Conway's Game of Life
|
|
|
|
def conway_step():
|
|
|
|
for x in range(128): # loop over x coordinates
|
|
|
|
for y in range(32): # loop over y coordinates
|
|
|
|
# count number of neigbours
|
|
|
|
num_neighbours = (lcd.get(x - 1, y - 1) +
|
|
|
|
lcd.get(x, y - 1) +
|
|
|
|
lcd.get(x + 1, y - 1) +
|
|
|
|
lcd.get(x - 1, y) +
|
|
|
|
lcd.get(x + 1, y) +
|
|
|
|
lcd.get(x + 1, y + 1) +
|
|
|
|
lcd.get(x, y + 1) +
|
|
|
|
lcd.get(x - 1, y + 1))
|
|
|
|
|
|
|
|
# check if the centre cell is alive or not
|
|
|
|
self = lcd.get(x, y)
|
|
|
|
|
|
|
|
# apply the rules of life
|
|
|
|
if self and not (2 <= num_neighbours <= 3):
|
|
|
|
lcd.reset(x, y) # not enough, or too many neighbours: cell dies
|
|
|
|
elif not self and num_neighbours == 3:
|
|
|
|
lcd.set(x, y) # exactly 3 neigbours around an empty cell: cell is born
|
|
|
|
|
|
|
|
# randomise the start
|
|
|
|
def conway_rand():
|
|
|
|
lcd.clear() # clear the LCD
|
|
|
|
for x in range(128): # loop over x coordinates
|
|
|
|
for y in range(32): # loop over y coordinates
|
|
|
|
if pyb.rand() & 1: # get a 1-bit random number
|
|
|
|
lcd.set(x, y) # set the pixel randomly
|
|
|
|
|
|
|
|
# loop for a certain number of frames, doing iterations of Conway's Game of Life
|
|
|
|
def conway_go(num_frames):
|
|
|
|
for i in range(num_frames):
|
|
|
|
conway_step() # do 1 iteration
|
|
|
|
lcd.show() # update the LCD
|
2014-01-16 17:10:32 +00:00
|
|
|
pyb.delay(300)
|
2014-01-07 17:14:05 +00:00
|
|
|
|
|
|
|
# PC testing
|
|
|
|
import lcd
|
|
|
|
import pyb
|
|
|
|
lcd = lcd.LCD(128, 32)
|
|
|
|
conway_rand()
|
2014-01-16 17:10:32 +00:00
|
|
|
conway_go(1000)
|