micropython/stmhal/sdcard.c

456 lines
16 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "sdcard.h"
#include "pin.h"
#include "genhdr/pins.h"
2014-09-09 15:09:07 +01:00
#include "bufhelper.h"
#include "dma.h"
#include "irq.h"
#if MICROPY_HW_HAS_SDCARD
2016-06-29 12:26:43 +01:00
#if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)
2016-06-29 12:26:43 +01:00
// The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
// #defines for backwards compatability.
#define SDIO SDMMC1
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING
#define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE
#define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
#define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE
#define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV
#endif
// TODO: Since SDIO is fundamentally half-duplex, we really only need to
// tie up one DMA channel. However, the HAL DMA API doesn't
// seem to provide a convenient way to change the direction. I believe that
// its as simple as changing the CR register and the Init.Direction field
// and make DMA_SetConfig public.
// TODO: I think that as an optimization, we can allocate these dynamically
// if an sd card is detected. This will save approx 260 bytes of RAM
// when no sdcard was being used.
static SD_HandleTypeDef sd_handle;
static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;
void sdcard_init(void) {
GPIO_InitTypeDef GPIO_Init_Structure;
// invalidate the sd_handle
sd_handle.Instance = NULL;
// configure SD GPIO
// we do this here an not in HAL_SD_MspInit because it apparently
// makes it more robust to have the pins always pulled high
GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP;
GPIO_Init_Structure.Pull = GPIO_PULLUP;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Alternate = GPIO_AF12_SDIO;
GPIO_Init_Structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
HAL_GPIO_Init(GPIOC, &GPIO_Init_Structure);
GPIO_Init_Structure.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure);
// configure the SD card detect pin
// we do this here so we can detect if the SD card is inserted before powering it on
GPIO_Init_Structure.Mode = GPIO_MODE_INPUT;
GPIO_Init_Structure.Pull = MICROPY_HW_SDCARD_DETECT_PULL;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Pin = MICROPY_HW_SDCARD_DETECT_PIN.pin_mask;
HAL_GPIO_Init(MICROPY_HW_SDCARD_DETECT_PIN.gpio, &GPIO_Init_Structure);
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
// enable SDIO clock
__SDIO_CLK_ENABLE();
// NVIC configuration for SDIO interrupts
HAL_NVIC_SetPriority(SDIO_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO);
HAL_NVIC_EnableIRQ(SDIO_IRQn);
// GPIO have already been initialised by sdcard_init
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
HAL_NVIC_DisableIRQ(SDIO_IRQn);
__SDIO_CLK_DISABLE();
}
bool sdcard_is_present(void) {
return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
}
bool sdcard_power_on(void) {
if (!sdcard_is_present()) {
return false;
}
if (sd_handle.Instance) {
return true;
}
// SD device interface configuration
sd_handle.Instance = SDIO;
sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE;
sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// init the SD interface, with retry if it's not ready yet
HAL_SD_CardInfoTypedef cardinfo;
for (int retry = 10; HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK; retry--) {
if (retry == 0) {
goto error;
}
HAL_Delay(50);
}
// configure the SD bus width for wide operation
if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) {
HAL_SD_DeInit(&sd_handle);
goto error;
}
return true;
error:
sd_handle.Instance = NULL;
return false;
}
void sdcard_power_off(void) {
if (!sd_handle.Instance) {
return;
}
HAL_SD_DeInit(&sd_handle);
sd_handle.Instance = NULL;
}
uint64_t sdcard_get_capacity_in_bytes(void) {
if (sd_handle.Instance == NULL) {
return 0;
}
HAL_SD_CardInfoTypedef cardinfo;
HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
return cardinfo.CardCapacity;
}
void SDIO_IRQHandler(void) {
IRQ_ENTER(SDIO_IRQn);
HAL_SD_IRQHandler(&sd_handle);
IRQ_EXIT(SDIO_IRQn);
}
mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return SD_ERROR;
}
HAL_SD_ErrorTypedef err = SD_OK;
// check that dest pointer is aligned on a 4-byte boundary
uint8_t *orig_dest = NULL;
uint32_t saved_word;
if (((uint32_t)dest & 3) != 0) {
// Pointer is not aligned so it needs fixing.
// We could allocate a temporary block of RAM (as sdcard_write_blocks
// does) but instead we are going to use the dest buffer inplace. We
// are going to align the pointer, save the initial word at the aligned
// location, read into the aligned memory, move the memory back to the
// unaligned location, then restore the initial bytes at the aligned
// location. We should have no trouble doing this as those initial
// bytes at the aligned location should be able to be changed for the
// duration of this function call.
orig_dest = dest;
dest = (uint8_t*)((uint32_t)dest & ~3);
saved_word = *(uint32_t*)dest;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
dma_init(&sd_rx_dma, &dma_SDIO_0_RX, &sd_handle);
sd_handle.hdmarx = &sd_rx_dma;
err = HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
if (err == SD_OK) {
// wait for DMA transfer to finish, with a large timeout
err = HAL_SD_CheckReadOperation(&sd_handle, 100000000);
}
dma_deinit(&dma_SDIO_0_RX);
sd_handle.hdmarx = NULL;
restore_irq_pri(basepri);
} else {
err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
}
if (orig_dest != NULL) {
// move the read data to the non-aligned position, and restore the initial bytes
memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
memcpy(dest, &saved_word, orig_dest - dest);
}
return err;
}
mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return SD_ERROR;
}
HAL_SD_ErrorTypedef err = SD_OK;
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
// pointer is not aligned, so allocate a temporary block to do the write
uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
if (src_aligned == NULL) {
return SD_ERROR;
}
for (size_t i = 0; i < num_blocks; ++i) {
memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
err = sdcard_write_blocks(src_aligned, block_num + i, 1);
if (err != SD_OK) {
break;
}
}
m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
return err;
}
if (query_irq() == IRQ_STATE_ENABLED) {
// we must disable USB irqs to prevent MSC contention with SD card
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
dma_init(&sd_tx_dma, &dma_SDIO_0_TX, &sd_handle);
sd_handle.hdmatx = &sd_tx_dma;
err = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
if (err == SD_OK) {
// wait for DMA transfer to finish, with a large timeout
err = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
}
dma_deinit(&dma_SDIO_0_TX);
sd_handle.hdmatx = NULL;
restore_irq_pri(basepri);
} else {
err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
}
return err;
}
/******************************************************************************/
// Micro Python bindings
//
// Expose the SD card as an object with the block protocol.
// there is a singleton SDCard object
const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};
STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&pyb_sdcard_obj;
}
STATIC mp_obj_t sd_present(mp_obj_t self) {
return mp_obj_new_bool(sdcard_is_present());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
bool result;
if (mp_obj_is_true(state)) {
result = sdcard_power_on();
} else {
sdcard_power_off();
result = true;
}
return mp_obj_new_bool(result);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
STATIC mp_obj_t sd_info(mp_obj_t self) {
if (sd_handle.Instance == NULL) {
return mp_const_none;
}
HAL_SD_CardInfoTypedef cardinfo;
HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
// cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
mp_obj_t tuple[3] = {
mp_obj_new_int_from_ull(cardinfo.CardCapacity),
mp_obj_new_int_from_uint(cardinfo.CardBlockSize),
mp_obj_new_int(cardinfo.CardType),
};
return mp_obj_new_tuple(3, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);
// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);
if (ret != 0) {
m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret));
}
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
2014-09-09 15:09:07 +01:00
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
2014-09-09 15:09:07 +01:00
if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE));
2014-09-09 15:09:07 +01:00
}
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
if (ret != 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret));
2014-09-09 15:09:07 +01:00
}
2014-09-09 15:09:07 +01:00
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);
2014-09-09 15:09:07 +01:00
STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);
STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);
STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT:
if (!sdcard_power_on()) {
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_DEINIT:
sdcard_power_off();
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_SYNC:
// nothing to do
return MP_OBJ_NEW_SMALL_INT(0); // success
case BP_IOCTL_SEC_COUNT:
return MP_OBJ_NEW_SMALL_INT(0); // TODO
case BP_IOCTL_SEC_SIZE:
return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);
default: // unknown command
return MP_OBJ_NEW_SMALL_INT(-1); // error
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);
STATIC const mp_map_elem_t pyb_sdcard_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&sd_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj },
2014-09-09 15:09:07 +01:00
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&sd_write_obj },
// block device protocol
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&pyb_sdcard_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&pyb_sdcard_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&pyb_sdcard_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);
const mp_obj_type_t pyb_sdcard_type = {
{ &mp_type_type },
.name = MP_QSTR_SDCard,
.make_new = pyb_sdcard_make_new,
.locals_dict = (mp_obj_t)&pyb_sdcard_locals_dict,
};
void sdcard_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj;
}
#endif // MICROPY_HW_HAS_SDCARD