micropython/ports/esp32/network_lan.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

439 lines
16 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 "Eric Poulsen" <eric@zyxod.com>
* Copyright (c) 2021 "Tobias Eydam" <tobiaseydam@hotmail.com>
*
* Based on the ESP IDF example code which is Public Domain / CC0
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "esp_idf_version.h"
// LAN only for ESP32 (not ESP32S2) and only for ESP-IDF v4.1 and higher
#if MICROPY_PY_NETWORK_LAN
#include "esp_eth.h"
#include "esp_eth_mac.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_netif.h"
#if CONFIG_ETH_USE_SPI_ETHERNET
#include "driver/spi_master.h"
#endif
#include "modnetwork.h"
typedef struct _lan_if_obj_t {
mp_obj_base_t base;
int if_id; // MUST BE FIRST to match wlan_if_obj_t
bool initialized;
bool active;
int8_t mdc_pin;
int8_t mdio_pin;
int8_t phy_power_pin;
int8_t phy_cs_pin;
int8_t phy_int_pin;
uint8_t phy_addr;
uint8_t phy_type;
esp_eth_phy_t *phy;
esp_netif_t *eth_netif;
esp_eth_handle_t eth_handle;
} lan_if_obj_t;
const mp_obj_type_t lan_if_type;
STATIC lan_if_obj_t lan_obj = {{&lan_if_type}, ESP_IF_ETH, false, false};
STATIC uint8_t eth_status = 0;
static void eth_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data) {
switch (event_id) {
case ETHERNET_EVENT_CONNECTED:
eth_status = ETH_CONNECTED;
ESP_LOGI("ethernet", "Ethernet Link Up");
break;
case ETHERNET_EVENT_DISCONNECTED:
eth_status = ETH_DISCONNECTED;
ESP_LOGI("ethernet", "Ethernet Link Down");
break;
case ETHERNET_EVENT_START:
eth_status = ETH_STARTED;
ESP_LOGI("ethernet", "Ethernet Started");
break;
case ETHERNET_EVENT_STOP:
eth_status = ETH_STOPPED;
ESP_LOGI("ethernet", "Ethernet Stopped");
break;
case IP_EVENT_ETH_GOT_IP:
eth_status = ETH_GOT_IP;
ESP_LOGI("ethernet", "Ethernet Got IP");
break;
default:
break;
}
}
STATIC mp_obj_t get_lan(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
lan_if_obj_t *self = &lan_obj;
if (self->initialized) {
return MP_OBJ_FROM_PTR(&lan_obj);
}
enum { ARG_id, ARG_mdc, ARG_mdio, ARG_power, ARG_phy_addr, ARG_phy_type,
ARG_spi, ARG_cs, ARG_int, ARG_ref_clk_mode, ARG_ref_clk };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_mdc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_mdio, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_power, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_phy_addr, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_phy_type, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_spi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_cs, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_int, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
#if ESP_IDF_VERSION_MINOR >= 4
// Dynamic ref_clk configuration available at v4.4
{ MP_QSTR_ref_clk_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_ref_clk, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
#endif
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_id].u_obj != mp_const_none) {
if (mp_obj_get_int(args[ARG_id].u_obj) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid LAN interface identifier"));
}
}
#define GET_PIN(XXX) args[XXX].u_obj == mp_const_none ? -1 : machine_pin_get_id(args[XXX].u_obj);
self->mdc_pin = GET_PIN(ARG_mdc);
self->mdio_pin = GET_PIN(ARG_mdio);
self->phy_power_pin = GET_PIN(ARG_power);
self->phy_cs_pin = GET_PIN(ARG_cs);
self->phy_int_pin = GET_PIN(ARG_int);
if (args[ARG_phy_addr].u_int < 0x00 || args[ARG_phy_addr].u_int > 0x1f) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid phy address"));
}
self->phy_addr = args[ARG_phy_addr].u_int;
if (args[ARG_phy_type].u_int != PHY_LAN8710 &&
args[ARG_phy_type].u_int != PHY_LAN8720 &&
args[ARG_phy_type].u_int != PHY_IP101 &&
args[ARG_phy_type].u_int != PHY_RTL8201 &&
#if ESP_IDF_VERSION_MINOR >= 3 // KSZ8041 is new in ESP-IDF v4.3
args[ARG_phy_type].u_int != PHY_KSZ8041 &&
#endif
#if ESP_IDF_VERSION_MINOR >= 4 // KSZ8081 is new in ESP-IDF v4.4
args[ARG_phy_type].u_int != PHY_KSZ8081 &&
#endif
#if CONFIG_ETH_USE_SPI_ETHERNET
#if CONFIG_ETH_SPI_ETHERNET_KSZ8851SNL
args[ARG_phy_type].u_int != PHY_KSZ8851SNL &&
#endif
#if CONFIG_ETH_SPI_ETHERNET_DM9051
args[ARG_phy_type].u_int != PHY_DM9051 &&
#endif
#if CONFIG_ETH_SPI_ETHERNET_W5500
args[ARG_phy_type].u_int != PHY_W5500 &&
#endif
#endif
args[ARG_phy_type].u_int != PHY_DP83848) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid phy type"));
}
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG();
esp_eth_mac_t *mac = NULL;
// Dynamic ref_clk configuration available at v4.4
#if ESP_IDF_VERSION_MINOR >= 4
if (args[ARG_ref_clk_mode].u_int != -1) {
// Map the GPIO_MODE constants to EMAC_CLK constants.
mac_config.clock_config.rmii.clock_mode =
args[ARG_ref_clk_mode].u_int == GPIO_MODE_INPUT ? EMAC_CLK_EXT_IN : EMAC_CLK_OUT;
}
if (args[ARG_ref_clk].u_obj != mp_const_none) {
mac_config.clock_config.rmii.clock_gpio = machine_pin_get_id(args[ARG_ref_clk].u_obj);
}
#endif
eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG();
phy_config.phy_addr = self->phy_addr;
phy_config.reset_gpio_num = self->phy_power_pin;
self->phy = NULL;
#if CONFIG_ETH_USE_SPI_ETHERNET
spi_device_handle_t spi_handle = NULL;
if (IS_SPI_PHY(args[ARG_phy_type].u_int)) {
spi_device_interface_config_t devcfg = {
.mode = 0,
.clock_speed_hz = MICROPY_PY_NETWORK_LAN_SPI_CLOCK_SPEED_MZ * 1000 * 1000,
.queue_size = 20,
.spics_io_num = self->phy_cs_pin,
};
switch (args[ARG_phy_type].u_int) {
#if CONFIG_ETH_SPI_ETHERNET_DM9051
case PHY_DM9051: {
devcfg.command_bits = 1;
devcfg.address_bits = 7;
break;
}
#endif
#if CONFIG_ETH_SPI_ETHERNET_W5500
case PHY_W5500: {
devcfg.command_bits = 16;
devcfg.address_bits = 8;
break;
}
#endif
}
spi_host_device_t host = machine_hw_spi_get_host(args[ARG_spi].u_obj);
if (spi_bus_add_device(host, &devcfg, &spi_handle) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("spi_bus_add_device failed"));
}
}
#endif
switch (args[ARG_phy_type].u_int) {
#if CONFIG_IDF_TARGET_ESP32
case PHY_LAN8710:
case PHY_LAN8720:
self->phy = esp_eth_phy_new_lan8720(&phy_config);
break;
case PHY_IP101:
self->phy = esp_eth_phy_new_ip101(&phy_config);
break;
case PHY_RTL8201:
self->phy = esp_eth_phy_new_rtl8201(&phy_config);
break;
case PHY_DP83848:
self->phy = esp_eth_phy_new_dp83848(&phy_config);
break;
#if ESP_IDF_VERSION_MINOR >= 3 // KSZ8041 is new in ESP-IDF v4.3
case PHY_KSZ8041:
self->phy = esp_eth_phy_new_ksz8041(&phy_config);
break;
#endif
#if ESP_IDF_VERSION_MINOR >= 4 // KSZ8081 is new in ESP-IDF v4.4
case PHY_KSZ8081:
self->phy = esp_eth_phy_new_ksz8081(&phy_config);
break;
#endif
#endif
#if CONFIG_ETH_USE_SPI_ETHERNET
#if CONFIG_ETH_SPI_ETHERNET_KSZ8851SNL
case PHY_KSZ8851SNL: {
eth_ksz8851snl_config_t chip_config = ETH_KSZ8851SNL_DEFAULT_CONFIG(spi_handle);
chip_config.int_gpio_num = self->phy_int_pin;
mac = esp_eth_mac_new_ksz8851snl(&chip_config, &mac_config);
self->phy = esp_eth_phy_new_ksz8851snl(&phy_config);
break;
}
#endif
#if CONFIG_ETH_SPI_ETHERNET_DM9051
case PHY_DM9051: {
eth_dm9051_config_t chip_config = ETH_DM9051_DEFAULT_CONFIG(spi_handle);
chip_config.int_gpio_num = self->phy_int_pin;
mac = esp_eth_mac_new_dm9051(&chip_config, &mac_config);
self->phy = esp_eth_phy_new_dm9051(&phy_config);
break;
}
#endif
#if CONFIG_ETH_SPI_ETHERNET_W5500
case PHY_W5500: {
eth_w5500_config_t chip_config = ETH_W5500_DEFAULT_CONFIG(spi_handle);
chip_config.int_gpio_num = self->phy_int_pin;
mac = esp_eth_mac_new_w5500(&chip_config, &mac_config);
self->phy = esp_eth_phy_new_w5500(&phy_config);
break;
}
#endif
#endif
}
#if CONFIG_IDF_TARGET_ESP32
if (!IS_SPI_PHY(args[ARG_phy_type].u_int)) {
if (self->mdc_pin == -1 || self->mdio_pin == -1) {
mp_raise_ValueError(MP_ERROR_TEXT("mdc and mdio must be specified"));
}
mac_config.smi_mdc_gpio_num = self->mdc_pin;
mac_config.smi_mdio_gpio_num = self->mdio_pin;
mac = esp_eth_mac_new_esp32(&mac_config);
}
#endif
if (esp_netif_init() != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_netif_init failed"));
}
esp_netif_config_t cfg = ESP_NETIF_DEFAULT_ETH();
self->eth_netif = esp_netif_new(&cfg);
if (esp_eth_set_default_handlers(self->eth_netif) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_eth_set_default_handlers failed (invalid parameter)"));
}
if (esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, NULL) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_event_handler_register failed"));
}
if (esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, NULL) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_event_handler_register failed"));
}
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, self->phy);
esp_err_t esp_err = esp_eth_driver_install(&config, &self->eth_handle);
if (esp_err == ESP_OK) {
self->active = false;
self->initialized = true;
} else {
if (esp_err == ESP_ERR_INVALID_ARG) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_eth_driver_install failed with invalid argument"));
} else if (esp_err == ESP_ERR_NO_MEM) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_eth_driver_install failed with no memory for driver"));
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_eth_driver_install failed"));
}
}
if (esp_netif_attach(self->eth_netif, esp_eth_new_netif_glue(self->eth_handle)) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("esp_netif_attach failed"));
}
eth_status = ETH_INITIALIZED;
return MP_OBJ_FROM_PTR(&lan_obj);
}
MP_DEFINE_CONST_FUN_OBJ_KW(get_lan_obj, 0, get_lan);
STATIC mp_obj_t lan_active(size_t n_args, const mp_obj_t *args) {
lan_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args > 1) {
if (mp_obj_is_true(args[1])) {
self->active = (esp_eth_start(self->eth_handle) == ESP_OK);
if (!self->active) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ethernet enable failed"));
}
} else {
self->active = !(esp_eth_stop(self->eth_handle) == ESP_OK);
if (self->active) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ethernet disable failed"));
}
}
}
return mp_obj_new_bool(self->active);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(lan_active_obj, 1, 2, lan_active);
STATIC mp_obj_t lan_status(mp_obj_t self_in) {
return MP_OBJ_NEW_SMALL_INT(eth_status);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(lan_status_obj, lan_status);
STATIC mp_obj_t lan_isconnected(mp_obj_t self_in) {
lan_if_obj_t *self = MP_OBJ_TO_PTR(self_in);
return self->active ? mp_obj_new_bool(self->phy->get_link(self->phy) == ETH_LINK_UP) : mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(lan_isconnected_obj, lan_isconnected);
STATIC mp_obj_t lan_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
if (n_args != 1 && kwargs->used != 0) {
mp_raise_TypeError(MP_ERROR_TEXT("either pos or kw args are allowed"));
}
lan_if_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (kwargs->used != 0) {
for (size_t i = 0; i < kwargs->alloc; i++) {
if (mp_map_slot_is_filled(kwargs, i)) {
switch (mp_obj_str_get_qstr(kwargs->table[i].key)) {
case MP_QSTR_mac: {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(kwargs->table[i].value, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len != 6) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid buffer length"));
}
if (
(esp_eth_ioctl(self->eth_handle, ETH_CMD_S_MAC_ADDR, bufinfo.buf) != ESP_OK) ||
(esp_netif_set_mac(self->eth_netif, bufinfo.buf) != ESP_OK)
) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("failed setting MAC address"));
}
break;
}
default:
break;
}
}
}
return mp_const_none;
}
if (n_args != 2) {
mp_raise_TypeError(MP_ERROR_TEXT("can query only one param"));
}
mp_obj_t val = mp_const_none;
switch (mp_obj_str_get_qstr(args[1])) {
case MP_QSTR_mac: {
uint8_t mac[6];
esp_eth_ioctl(self->eth_handle, ETH_CMD_G_MAC_ADDR, mac);
return mp_obj_new_bytes(mac, sizeof(mac));
}
default:
mp_raise_ValueError(MP_ERROR_TEXT("unknown config param"));
}
return val;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(lan_config_obj, 1, lan_config);
STATIC const mp_rom_map_elem_t lan_if_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&lan_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&lan_isconnected_obj) },
{ MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&lan_status_obj) },
{ MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&lan_config_obj) },
{ MP_ROM_QSTR(MP_QSTR_ifconfig), MP_ROM_PTR(&esp_ifconfig_obj) },
};
STATIC MP_DEFINE_CONST_DICT(lan_if_locals_dict, lan_if_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
lan_if_type,
MP_QSTR_LAN,
MP_TYPE_FLAG_NONE,
locals_dict, &lan_if_locals_dict
);
#endif