2014-06-16 06:33:14 +01:00
|
|
|
/*
|
|
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
|
|
*
|
|
|
|
* The MIT License (MIT)
|
|
|
|
*
|
|
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
* THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "mpconfig.h"
|
|
|
|
#include "nlr.h"
|
|
|
|
#include "misc.h"
|
|
|
|
#include "qstr.h"
|
|
|
|
#include "obj.h"
|
|
|
|
#include "runtime.h"
|
2014-07-02 13:42:37 +01:00
|
|
|
#include MICROPY_HAL_H
|
2014-06-16 06:33:14 +01:00
|
|
|
#include "bufhelper.h"
|
|
|
|
#include "uart.h"
|
|
|
|
|
|
|
|
/// \moduleref pyb
|
|
|
|
/// \class UART - duplex serial communication bus
|
|
|
|
///
|
|
|
|
/// UART implements the standard UART/USART duplex serial communications protocol. At
|
|
|
|
/// the physical level it consists of 2 lines: RX and TX.
|
|
|
|
///
|
|
|
|
/// See usage model of I2C. UART is very similar. Main difference is
|
|
|
|
/// parameters to init the UART bus:
|
|
|
|
///
|
|
|
|
/// from pyb import UART
|
|
|
|
///
|
|
|
|
/// uart = UART(1, 9600) # init with given baudrate
|
|
|
|
/// uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters
|
|
|
|
///
|
|
|
|
/// Bits can be 8 or 9, stop can be 1 or 2, parity can be None, 0 (even), 1 (odd).
|
|
|
|
///
|
|
|
|
/// Extra method:
|
|
|
|
///
|
|
|
|
/// uart.any() # returns True if any characters waiting
|
|
|
|
|
|
|
|
struct _pyb_uart_obj_t {
|
|
|
|
mp_obj_base_t base;
|
|
|
|
pyb_uart_t uart_id;
|
|
|
|
bool is_enabled;
|
|
|
|
// UART_HandleTypeDef uart;
|
|
|
|
};
|
|
|
|
|
|
|
|
pyb_uart_obj_t *pyb_uart_global_debug = NULL;
|
|
|
|
|
|
|
|
// assumes Init parameters have been set up correctly
|
|
|
|
bool uart_init2(pyb_uart_obj_t *uart_obj) {
|
|
|
|
#if 0
|
|
|
|
USART_TypeDef *UARTx = NULL;
|
|
|
|
|
|
|
|
uint32_t GPIO_Pin = 0;
|
|
|
|
uint8_t GPIO_AF_UARTx = 0;
|
|
|
|
GPIO_TypeDef* GPIO_Port = NULL;
|
|
|
|
|
|
|
|
switch (uart_obj->uart_id) {
|
|
|
|
// USART1 is on PA9/PA10 (CK on PA8), PB6/PB7
|
|
|
|
case PYB_UART_1:
|
|
|
|
UARTx = USART1;
|
|
|
|
GPIO_AF_UARTx = GPIO_AF7_USART1;
|
|
|
|
|
|
|
|
#if defined (PYBV4) || defined(PYBV10)
|
|
|
|
GPIO_Port = GPIOB;
|
|
|
|
GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7;
|
|
|
|
#else
|
|
|
|
GPIO_Port = GPIOA;
|
|
|
|
GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__USART1_CLK_ENABLE();
|
|
|
|
break;
|
|
|
|
|
|
|
|
// USART2 is on PA2/PA3 (CK on PA4), PD5/PD6 (CK on PD7)
|
|
|
|
case PYB_UART_2:
|
|
|
|
UARTx = USART2;
|
|
|
|
GPIO_AF_UARTx = GPIO_AF7_USART2;
|
|
|
|
|
|
|
|
GPIO_Port = GPIOA;
|
|
|
|
GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3;
|
|
|
|
|
|
|
|
__USART2_CLK_ENABLE();
|
|
|
|
break;
|
|
|
|
|
|
|
|
// USART3 is on PB10/PB11 (CK on PB12), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10)
|
|
|
|
case PYB_UART_3:
|
|
|
|
UARTx = USART3;
|
|
|
|
GPIO_AF_UARTx = GPIO_AF7_USART3;
|
|
|
|
|
|
|
|
#if defined(PYBV3) || defined(PYBV4) | defined(PYBV10)
|
|
|
|
GPIO_Port = GPIOB;
|
|
|
|
GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11;
|
|
|
|
#else
|
|
|
|
GPIO_Port = GPIOD;
|
|
|
|
GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9;
|
|
|
|
#endif
|
|
|
|
__USART3_CLK_ENABLE();
|
|
|
|
break;
|
|
|
|
|
|
|
|
// UART4 is on PA0/PA1, PC10/PC11
|
|
|
|
case PYB_UART_4:
|
|
|
|
UARTx = UART4;
|
|
|
|
GPIO_AF_UARTx = GPIO_AF8_UART4;
|
|
|
|
|
|
|
|
GPIO_Port = GPIOA;
|
|
|
|
GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1;
|
|
|
|
|
|
|
|
__UART4_CLK_ENABLE();
|
|
|
|
break;
|
|
|
|
|
|
|
|
// USART6 is on PC6/PC7 (CK on PC8)
|
|
|
|
case PYB_UART_6:
|
|
|
|
UARTx = USART6;
|
|
|
|
GPIO_AF_UARTx = GPIO_AF8_USART6;
|
|
|
|
|
|
|
|
GPIO_Port = GPIOC;
|
|
|
|
GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7;
|
|
|
|
|
|
|
|
__USART6_CLK_ENABLE();
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// init GPIO
|
|
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
|
|
GPIO_InitStructure.Pin = GPIO_Pin;
|
|
|
|
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
|
|
|
|
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
|
|
|
|
GPIO_InitStructure.Pull = GPIO_PULLUP;
|
|
|
|
GPIO_InitStructure.Alternate = GPIO_AF_UARTx;
|
|
|
|
HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure);
|
|
|
|
|
|
|
|
// init UARTx
|
|
|
|
uart_obj->uart.Instance = UARTx;
|
|
|
|
HAL_UART_Init(&uart_obj->uart);
|
|
|
|
|
|
|
|
uart_obj->is_enabled = true;
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) {
|
|
|
|
#if 0
|
|
|
|
UART_HandleTypeDef *uh = &uart_obj->uart;
|
|
|
|
memset(uh, 0, sizeof(*uh));
|
|
|
|
uh->Init.BaudRate = baudrate;
|
|
|
|
uh->Init.WordLength = UART_WORDLENGTH_8B;
|
|
|
|
uh->Init.StopBits = UART_STOPBITS_1;
|
|
|
|
uh->Init.Parity = UART_PARITY_NONE;
|
|
|
|
uh->Init.Mode = UART_MODE_TX_RX;
|
|
|
|
uh->Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
|
|
uh->Init.OverSampling = UART_OVERSAMPLING_16;
|
|
|
|
#endif
|
|
|
|
return uart_init2(uart_obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool uart_rx_any(pyb_uart_obj_t *uart_obj) {
|
|
|
|
#if 0
|
|
|
|
return __HAL_UART_GET_FLAG(&uart_obj->uart, UART_FLAG_RXNE);
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
int uart_rx_char(pyb_uart_obj_t *uart_obj) {
|
|
|
|
uint8_t ch;
|
|
|
|
#if 0
|
|
|
|
if (HAL_UART_Receive(&uart_obj->uart, &ch, 1, 0) != HAL_OK) {
|
|
|
|
ch = 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
ch = 'A';
|
|
|
|
#endif
|
|
|
|
return ch;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) {
|
|
|
|
#if 0
|
|
|
|
uint8_t ch = c;
|
|
|
|
HAL_UART_Transmit(&uart_obj->uart, &ch, 1, 100000);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void uart_tx_str(pyb_uart_obj_t *uart_obj, const char *str) {
|
|
|
|
#if 0
|
|
|
|
HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, strlen(str), 100000);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
|
|
|
|
#if 0
|
|
|
|
HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, 100000);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
|
|
|
|
for (const char *top = str + len; str < top; str++) {
|
|
|
|
if (*str == '\n') {
|
|
|
|
uart_tx_char(uart_obj, '\r');
|
|
|
|
}
|
|
|
|
uart_tx_char(uart_obj, *str);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************/
|
|
|
|
/* Micro Python bindings */
|
|
|
|
|
|
|
|
STATIC void pyb_uart_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
|
|
pyb_uart_obj_t *self = self_in;
|
|
|
|
if (!self->is_enabled) {
|
|
|
|
print(env, "UART(%lu)", self->uart_id);
|
|
|
|
} else {
|
|
|
|
#if 0
|
|
|
|
print(env, "UART(%lu, baudrate=%u, bits=%u, stop=%u",
|
|
|
|
self->uart_id, self->uart.Init.BaudRate,
|
|
|
|
self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9,
|
|
|
|
self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2);
|
|
|
|
if (self->uart.Init.Parity == UART_PARITY_NONE) {
|
|
|
|
print(env, ", parity=None)");
|
|
|
|
} else {
|
|
|
|
print(env, ", parity=%u)", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \method init(baudrate, *, bits=8, stop=1, parity=None)
|
|
|
|
///
|
|
|
|
/// Initialise the SPI bus with the given parameters:
|
|
|
|
///
|
|
|
|
/// - `baudrate` is the clock rate.
|
|
|
|
/// - `bits` is the number of bits per byte, 8 or 9.
|
|
|
|
/// - `stop` is the number of stop bits, 1 or 2.
|
|
|
|
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
|
|
|
|
STATIC const mp_arg_t pyb_uart_init_args[] = {
|
|
|
|
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
|
|
|
|
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
|
|
|
|
{ MP_QSTR_stop, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
|
|
|
|
{ MP_QSTR_parity, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
|
|
};
|
2014-07-15 06:19:27 +01:00
|
|
|
#define PYB_UART_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_init_args)
|
2014-06-16 06:33:14 +01:00
|
|
|
|
|
|
|
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
|
|
// parse args
|
|
|
|
mp_arg_val_t vals[PYB_UART_INIT_NUM_ARGS];
|
|
|
|
mp_arg_parse_all(n_args, args, kw_args, PYB_UART_INIT_NUM_ARGS, pyb_uart_init_args, vals);
|
|
|
|
#if 0
|
|
|
|
// set the UART configuration values
|
|
|
|
memset(&self->uart, 0, sizeof(self->uart));
|
|
|
|
UART_InitTypeDef *init = &self->uart.Init;
|
|
|
|
init->BaudRate = vals[0].u_int;
|
|
|
|
init->WordLength = vals[1].u_int == 8 ? UART_WORDLENGTH_8B : UART_WORDLENGTH_9B;
|
|
|
|
switch (vals[2].u_int) {
|
|
|
|
case 1: init->StopBits = UART_STOPBITS_1; break;
|
|
|
|
default: init->StopBits = UART_STOPBITS_2; break;
|
|
|
|
}
|
|
|
|
if (vals[3].u_obj == mp_const_none) {
|
|
|
|
init->Parity = UART_PARITY_NONE;
|
|
|
|
} else {
|
2014-07-03 13:25:24 +01:00
|
|
|
mp_int_t parity = mp_obj_get_int(vals[3].u_obj);
|
2014-06-16 06:33:14 +01:00
|
|
|
init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
|
|
|
|
}
|
|
|
|
init->Mode = UART_MODE_TX_RX;
|
|
|
|
init->HwFlowCtl = UART_HWCONTROL_NONE;
|
|
|
|
init->OverSampling = UART_OVERSAMPLING_16;
|
|
|
|
|
|
|
|
// init UART (if it fails, it's because the port doesn't exist)
|
|
|
|
if (!uart_init2(self)) {
|
|
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %d does not exist", self->uart_id));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return mp_const_none;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \classmethod \constructor(bus, ...)
|
|
|
|
///
|
|
|
|
/// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
|
|
|
|
/// With no additional parameters, the UART object is created but not
|
|
|
|
/// initialised (it has the settings from the last initialisation of
|
|
|
|
/// the bus, if any). If extra arguments are given, the bus is initialised.
|
|
|
|
/// See `init` for parameters of initialisation.
|
|
|
|
///
|
|
|
|
/// The physical pins of the UART busses are:
|
|
|
|
///
|
|
|
|
/// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
|
|
|
|
/// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
|
|
|
|
/// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
|
|
|
|
/// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
|
|
|
|
/// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
|
|
|
|
STATIC mp_obj_t pyb_uart_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
|
|
// check arguments
|
|
|
|
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
|
|
|
|
// create object
|
|
|
|
pyb_uart_obj_t *o = m_new_obj(pyb_uart_obj_t);
|
|
|
|
o->base.type = &pyb_uart_type;
|
|
|
|
|
|
|
|
// work out port
|
|
|
|
o->uart_id = 0;
|
|
|
|
#if 0
|
|
|
|
if (MP_OBJ_IS_STR(args[0])) {
|
|
|
|
const char *port = mp_obj_str_get_str(args[0]);
|
|
|
|
if (0) {
|
|
|
|
#if defined(PYBV10)
|
|
|
|
} else if (strcmp(port, "XA") == 0) {
|
|
|
|
o->uart_id = PYB_UART_XA;
|
|
|
|
} else if (strcmp(port, "XB") == 0) {
|
|
|
|
o->uart_id = PYB_UART_XB;
|
|
|
|
} else if (strcmp(port, "YA") == 0) {
|
|
|
|
o->uart_id = PYB_UART_YA;
|
|
|
|
} else if (strcmp(port, "YB") == 0) {
|
|
|
|
o->uart_id = PYB_UART_YB;
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %s does not exist", port));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
o->uart_id = mp_obj_get_int(args[0]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (n_args > 1 || n_kw > 0) {
|
|
|
|
// start the peripheral
|
|
|
|
mp_map_t kw_args;
|
|
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
|
|
pyb_uart_init_helper(o, n_args - 1, args + 1, &kw_args);
|
|
|
|
}
|
|
|
|
|
|
|
|
return o;
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC mp_obj_t pyb_uart_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
|
|
return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
|
|
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
|
|
|
|
|
|
|
|
/// \method deinit()
|
|
|
|
/// Turn off the UART bus.
|
|
|
|
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
|
2014-10-11 17:57:10 +01:00
|
|
|
//pyb_uart_obj_t *self = self_in;
|
|
|
|
// TODO
|
2014-06-16 06:33:14 +01:00
|
|
|
return mp_const_none;
|
|
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
|
|
|
|
|
|
|
|
/// \method any()
|
|
|
|
/// Return `True` if any characters waiting, else `False`.
|
|
|
|
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
|
|
|
|
pyb_uart_obj_t *self = self_in;
|
|
|
|
if (uart_rx_any(self)) {
|
|
|
|
return mp_const_true;
|
|
|
|
} else {
|
|
|
|
return mp_const_false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
|
|
|
|
|
|
|
|
/// \method send(send, *, timeout=5000)
|
|
|
|
/// Send data on the bus:
|
|
|
|
///
|
|
|
|
/// - `send` is the data to send (an integer to send, or a buffer object).
|
|
|
|
/// - `timeout` is the timeout in milliseconds to wait for the send.
|
|
|
|
///
|
|
|
|
/// Return value: `None`.
|
|
|
|
STATIC const mp_arg_t pyb_uart_send_args[] = {
|
|
|
|
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
|
|
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
|
|
|
|
};
|
2014-07-15 06:19:27 +01:00
|
|
|
#define PYB_UART_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_send_args)
|
2014-06-16 06:33:14 +01:00
|
|
|
|
|
|
|
STATIC mp_obj_t pyb_uart_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
|
|
// TODO assumes transmission size is 8-bits wide
|
|
|
|
|
|
|
|
pyb_uart_obj_t *self = args[0];
|
|
|
|
|
|
|
|
// parse args
|
|
|
|
mp_arg_val_t vals[PYB_UART_SEND_NUM_ARGS];
|
|
|
|
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_SEND_NUM_ARGS, pyb_uart_send_args, vals);
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// get the buffer to send from
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
|
|
uint8_t data[1];
|
|
|
|
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
|
|
|
|
|
|
|
|
// send the data
|
|
|
|
HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int);
|
|
|
|
|
|
|
|
if (status != HAL_OK) {
|
|
|
|
// TODO really need a HardwareError object, or something
|
|
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Transmit failed with code %d", status));
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
(void)self;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return mp_const_none;
|
|
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_send_obj, 1, pyb_uart_send);
|
|
|
|
|
|
|
|
/// \method recv(recv, *, timeout=5000)
|
|
|
|
///
|
|
|
|
/// Receive data on the bus:
|
|
|
|
///
|
|
|
|
/// - `recv` can be an integer, which is the number of bytes to receive,
|
|
|
|
/// or a mutable buffer, which will be filled with received bytes.
|
|
|
|
/// - `timeout` is the timeout in milliseconds to wait for the receive.
|
|
|
|
///
|
|
|
|
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
|
|
|
|
/// otherwise the same buffer that was passed in to `recv`.
|
|
|
|
STATIC const mp_arg_t pyb_uart_recv_args[] = {
|
|
|
|
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
|
|
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
|
|
|
|
};
|
2014-07-15 06:19:27 +01:00
|
|
|
#define PYB_UART_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_recv_args)
|
2014-06-16 06:33:14 +01:00
|
|
|
|
|
|
|
STATIC mp_obj_t pyb_uart_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
|
|
|
// TODO assumes transmission size is 8-bits wide
|
|
|
|
|
|
|
|
pyb_uart_obj_t *self = args[0];
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// parse args
|
|
|
|
mp_arg_val_t vals[PYB_UART_RECV_NUM_ARGS];
|
|
|
|
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_RECV_NUM_ARGS, pyb_uart_recv_args, vals);
|
|
|
|
|
|
|
|
// get the buffer to receive into
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
|
|
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
|
|
|
|
|
|
|
|
// receive the data
|
|
|
|
HAL_StatusTypeDef status = HAL_UART_Receive(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int);
|
|
|
|
|
|
|
|
if (status != HAL_OK) {
|
|
|
|
// TODO really need a HardwareError object, or something
|
|
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Receive failed with code %d", status));
|
|
|
|
}
|
|
|
|
|
|
|
|
// return the received data
|
|
|
|
if (o_ret == MP_OBJ_NULL) {
|
|
|
|
return vals[0].u_obj;
|
|
|
|
} else {
|
|
|
|
return mp_obj_str_builder_end(o_ret);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
(void)self;
|
|
|
|
return mp_const_none;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_recv_obj, 1, pyb_uart_recv);
|
|
|
|
|
|
|
|
STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
|
|
|
|
// instance methods
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_uart_send_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_uart_recv_obj },
|
|
|
|
};
|
|
|
|
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
|
|
|
|
|
|
|
|
const mp_obj_type_t pyb_uart_type = {
|
|
|
|
{ &mp_type_type },
|
|
|
|
.name = MP_QSTR_UART,
|
|
|
|
.print = pyb_uart_print,
|
|
|
|
.make_new = pyb_uart_make_new,
|
|
|
|
.locals_dict = (mp_obj_t)&pyb_uart_locals_dict,
|
|
|
|
};
|