micropython/ports/esp8266/machine_uart.c

333 lines
11 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "ets_sys.h"
#include "user_interface.h"
#include "uart.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "modmachine.h"
// UartDev is defined and initialized in rom code.
extern UartDevice UartDev;
typedef struct _pyb_uart_obj_t {
mp_obj_base_t base;
uint8_t uart_id;
uint8_t bits;
uint8_t parity;
uint8_t stop;
uint32_t baudrate;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
} pyb_uart_obj_t;
STATIC const char *_parity_name[] = {"None", "1", "0"};
/******************************************************************************/
// MicroPython bindings for UART
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, rxbuf=%u, timeout=%u, timeout_char=%u)",
self->uart_id, self->baudrate, self->bits, _parity_name[self->parity],
self->stop, uart0_get_rxbuf_len() - 1, self->timeout, self->timeout_char);
}
STATIC void pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rxbuf, ARG_timeout, ARG_timeout_char };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set baudrate
if (args[ARG_baudrate].u_int > 0) {
self->baudrate = args[ARG_baudrate].u_int;
UartDev.baut_rate = self->baudrate; // Sic!
}
// set data bits
switch (args[ARG_bits].u_int) {
case 0:
break;
case 5:
UartDev.data_bits = UART_FIVE_BITS;
self->bits = 5;
break;
case 6:
UartDev.data_bits = UART_SIX_BITS;
self->bits = 6;
break;
case 7:
UartDev.data_bits = UART_SEVEN_BITS;
self->bits = 7;
break;
case 8:
UartDev.data_bits = UART_EIGHT_BITS;
self->bits = 8;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits"));
break;
}
// set parity
if (args[ARG_parity].u_obj != MP_OBJ_NULL) {
if (args[ARG_parity].u_obj == mp_const_none) {
UartDev.parity = UART_NONE_BITS;
UartDev.exist_parity = UART_STICK_PARITY_DIS;
self->parity = 0;
} else {
mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj);
UartDev.exist_parity = UART_STICK_PARITY_EN;
if (parity & 1) {
UartDev.parity = UART_ODD_BITS;
self->parity = 1;
} else {
UartDev.parity = UART_EVEN_BITS;
self->parity = 2;
}
}
}
// set tx/rx pins
mp_hal_pin_obj_t tx = 1, rx = 3;
if (args[ARG_tx].u_obj != MP_OBJ_NULL) {
tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj);
}
if (args[ARG_rx].u_obj != MP_OBJ_NULL) {
rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj);
}
if (tx == 1 && rx == 3) {
system_uart_de_swap();
} else if (tx == 15 && rx == 13) {
system_uart_swap();
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid tx/rx"));
}
// set stop bits
switch (args[ARG_stop].u_int) {
case 0:
break;
case 1:
UartDev.stop_bits = UART_ONE_STOP_BIT;
self->stop = 1;
break;
case 2:
UartDev.stop_bits = UART_TWO_STOP_BIT;
self->stop = 2;
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits"));
break;
}
// set rx ring buffer
if (args[ARG_rxbuf].u_int > 0) {
uint16_t len = args[ARG_rxbuf].u_int + 1; // account for usable items in ringbuf
byte *buf;
if (len <= UART0_STATIC_RXBUF_LEN) {
buf = uart_ringbuf_array;
MP_STATE_PORT(uart0_rxbuf) = NULL; // clear any old pointer
} else {
buf = m_new(byte, len);
MP_STATE_PORT(uart0_rxbuf) = buf; // retain root pointer
}
uart0_set_rxbuf(buf, len);
}
// set timeout
self->timeout = args[ARG_timeout].u_int;
// set timeout_char
// make sure it is at least as long as a whole character (13 bits to be safe)
self->timeout_char = args[ARG_timeout_char].u_int;
uint32_t min_timeout_char = 13000 / self->baudrate + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
// setup
uart_setup(self->uart_id);
}
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get uart id
mp_int_t uart_id = mp_obj_get_int(args[0]);
if (uart_id != 0 && uart_id != 1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_id);
}
// create instance
pyb_uart_obj_t *self = m_new_obj(pyb_uart_obj_t);
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
self->baudrate = 115200;
self->bits = 8;
self->parity = 0;
self->stop = 1;
self->timeout = 0;
self->timeout_char = 0;
// init the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self->uart_id));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->uart_id == 1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("UART(1) can't read"));
}
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// wait for first char to become available
if (!uart_rx_wait(self->timeout * 1000)) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
// read the data
uint8_t *buf = buf_in;
for (;;) {
*buf++ = uart_rx_char();
if (--size == 0 || !uart_rx_wait(self->timeout_char * 1000)) {
// return number of bytes read
return buf - (uint8_t *)buf_in;
}
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
const byte *buf = buf_in;
/* TODO implement non-blocking
// wait to be able to write the first character
if (!uart_tx_wait(self, timeout)) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
*/
// write the data
for (size_t i = 0; i < size; ++i) {
uart_tx_one_char(self->uart_id, *buf++);
}
// return number of bytes written
return size;
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
pyb_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self->uart_id)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && uart_tx_any_room(self->uart_id)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_dict_t *)&pyb_uart_locals_dict,
};