micropython/ports/stm32/fdcan.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

338 lines
12 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN
#define FDCAN_ELEMENT_MASK_STDID (0x1ffc0000) // Standard Identifier
#define FDCAN_ELEMENT_MASK_EXTID (0x1fffffff) // Extended Identifier
#define FDCAN_ELEMENT_MASK_RTR (0x20000000) // Remote Transmission Request
#define FDCAN_ELEMENT_MASK_XTD (0x40000000) // Extended Identifier
#define FDCAN_ELEMENT_MASK_ESI (0x80000000) // Error State Indicator
#define FDCAN_ELEMENT_MASK_TS (0x0000ffff) // Timestamp
#define FDCAN_ELEMENT_MASK_DLC (0x000f0000) // Data Length Code
#define FDCAN_ELEMENT_MASK_BRS (0x00100000) // Bit Rate Switch
#define FDCAN_ELEMENT_MASK_FDF (0x00200000) // FD Format
#define FDCAN_ELEMENT_MASK_FIDX (0x7f000000) // Filter Index
#define FDCAN_ELEMENT_MASK_ANMF (0x80000000) // Accepted Non-matching Frame
bool can_init(pyb_can_obj_t *can_obj, uint32_t mode, uint32_t prescaler, uint32_t sjw, uint32_t bs1, uint32_t bs2, bool auto_restart) {
(void)auto_restart;
FDCAN_InitTypeDef *init = &can_obj->can.Init;
init->FrameFormat = FDCAN_FRAME_CLASSIC;
init->Mode = mode;
init->NominalPrescaler = prescaler; // tq = NominalPrescaler x (1/fdcan_ker_ck)
init->NominalSyncJumpWidth = sjw;
init->NominalTimeSeg1 = bs1; // NominalTimeSeg1 = Propagation_segment + Phase_segment_1
init->NominalTimeSeg2 = bs2;
init->AutoRetransmission = ENABLE;
init->TransmitPause = DISABLE;
init->ProtocolException = ENABLE;
// The Message RAM is shared between CAN1 and CAN2. Setting the offset to half
// the Message RAM for the second CAN and using half the resources for each CAN.
if (can_obj->can_id == PYB_CAN_1) {
init->MessageRAMOffset = 0;
} else {
init->MessageRAMOffset = 2560 / 2;
}
init->StdFiltersNbr = 64; // 128 / 2
init->ExtFiltersNbr = 0; // Not used
init->TxEventsNbr = 16; // 32 / 2
init->RxBuffersNbr = 32; // 64 / 2
init->TxBuffersNbr = 16; // 32 / 2
init->RxFifo0ElmtsNbr = 64; // 128 / 2
init->RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;
init->RxFifo1ElmtsNbr = 64; // 128 / 2
init->RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;
init->TxFifoQueueElmtsNbr = 16; // Tx fifo elements
init->TxElmtSize = FDCAN_DATA_BYTES_8;
init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
FDCAN_GlobalTypeDef *CANx = NULL;
const pin_obj_t *pins[2];
switch (can_obj->can_id) {
#if defined(MICROPY_HW_CAN1_TX)
case PYB_CAN_1:
CANx = FDCAN1;
pins[0] = MICROPY_HW_CAN1_TX;
pins[1] = MICROPY_HW_CAN1_RX;
break;
#endif
#if defined(MICROPY_HW_CAN2_TX)
case PYB_CAN_2:
CANx = FDCAN2;
pins[0] = MICROPY_HW_CAN2_TX;
pins[1] = MICROPY_HW_CAN2_RX;
break;
#endif
default:
return false;
}
// Enable FDCAN clock
__HAL_RCC_FDCAN_CLK_ENABLE();
// init GPIO
uint32_t pin_mode = MP_HAL_PIN_MODE_ALT;
uint32_t pin_pull = MP_HAL_PIN_PULL_UP;
for (int i = 0; i < 2; ++i) {
if (!mp_hal_pin_config_alt(pins[i], pin_mode, pin_pull, AF_FN_CAN, can_obj->can_id)) {
return false;
}
}
// init CANx
can_obj->can.Instance = CANx;
HAL_FDCAN_Init(&can_obj->can);
// Disable acceptance of non-matching frames (enabled by default)
HAL_FDCAN_ConfigGlobalFilter(&can_obj->can, FDCAN_REJECT, FDCAN_REJECT, DISABLE, DISABLE);
// The configuration registers are locked after CAN is started.
HAL_FDCAN_Start(&can_obj->can);
// Reset all filters
for (int f = 0; f < 64; ++f) {
can_clearfilter(can_obj, f, 0);
}
can_obj->is_enabled = true;
can_obj->num_error_warning = 0;
can_obj->num_error_passive = 0;
can_obj->num_bus_off = 0;
switch (can_obj->can_id) {
case PYB_CAN_1:
NVIC_SetPriority(FDCAN1_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
NVIC_SetPriority(FDCAN1_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
break;
case PYB_CAN_2:
NVIC_SetPriority(FDCAN2_IT0_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);
NVIC_SetPriority(FDCAN2_IT1_IRQn, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(FDCAN2_IT1_IRQn);
break;
default:
return false;
}
__HAL_FDCAN_ENABLE_IT(&can_obj->can, FDCAN_IT_BUS_OFF | FDCAN_IT_ERROR_WARNING | FDCAN_IT_ERROR_PASSIVE);
__HAL_FDCAN_ENABLE_IT(&can_obj->can, FDCAN_IT_RX_FIFO0_NEW_MESSAGE | FDCAN_IT_RX_FIFO1_NEW_MESSAGE);
__HAL_FDCAN_ENABLE_IT(&can_obj->can, FDCAN_IT_RX_FIFO0_MESSAGE_LOST | FDCAN_IT_RX_FIFO1_MESSAGE_LOST);
__HAL_FDCAN_ENABLE_IT(&can_obj->can, FDCAN_IT_RX_FIFO0_FULL | FDCAN_IT_RX_FIFO1_FULL);
return true;
}
void can_deinit(pyb_can_obj_t *self) {
self->is_enabled = false;
HAL_FDCAN_DeInit(&self->can);
if (self->can.Instance == FDCAN1) {
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#if defined(MICROPY_HW_CAN2_TX)
} else if (self->can.Instance == FDCAN2) {
HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn);
// TODO check if FDCAN2 is used.
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
#endif
}
}
void can_clearfilter(pyb_can_obj_t *self, uint32_t f, uint8_t bank) {
if (self && self->can.Instance) {
FDCAN_FilterTypeDef filter = {0};
filter.IdType = FDCAN_STANDARD_ID;
filter.FilterIndex = f;
filter.FilterConfig = FDCAN_FILTER_DISABLE;
HAL_FDCAN_ConfigFilter(&self->can, &filter);
}
}
int can_receive(FDCAN_HandleTypeDef *can, int fifo, FDCAN_RxHeaderTypeDef *hdr, uint8_t *data, uint32_t timeout_ms) {
volatile uint32_t *rxf, *rxa;
uint32_t fl;
if (fifo == FDCAN_RX_FIFO0) {
rxf = &can->Instance->RXF0S;
rxa = &can->Instance->RXF0A;
fl = FDCAN_RXF0S_F0FL;
} else {
rxf = &can->Instance->RXF1S;
rxa = &can->Instance->RXF1A;
fl = FDCAN_RXF1S_F1FL;
}
// Wait for a message to become available, with timeout
uint32_t start = HAL_GetTick();
while ((*rxf & fl) == 0) {
if (timeout_ms != HAL_MAX_DELAY) {
if (HAL_GetTick() - start >= timeout_ms) {
return -MP_ETIMEDOUT;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get pointer to incoming message
uint32_t index, *address;
if (fifo == FDCAN_RX_FIFO0) {
index = (*rxf & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos;
address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * can->Init.RxFifo0ElmtSize * 4));
} else {
index = (*rxf & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos;
address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * can->Init.RxFifo1ElmtSize * 4));
}
// Parse header of message
hdr->IdType = *address & FDCAN_ELEMENT_MASK_XTD;
if (hdr->IdType == FDCAN_STANDARD_ID) {
hdr->Identifier = (*address & FDCAN_ELEMENT_MASK_STDID) >> 18;
} else {
hdr->Identifier = *address & FDCAN_ELEMENT_MASK_EXTID;
}
hdr->RxFrameType = *address & FDCAN_ELEMENT_MASK_RTR;
hdr->ErrorStateIndicator = *address++ & FDCAN_ELEMENT_MASK_ESI;
hdr->RxTimestamp = *address & FDCAN_ELEMENT_MASK_TS;
hdr->DataLength = (*address & FDCAN_ELEMENT_MASK_DLC) >> 16;
hdr->BitRateSwitch = *address & FDCAN_ELEMENT_MASK_BRS;
hdr->FDFormat = *address & FDCAN_ELEMENT_MASK_FDF;
hdr->FilterIndex = (*address & FDCAN_ELEMENT_MASK_FIDX) >> 24;
hdr->IsFilterMatchingFrame = (*address++ & FDCAN_ELEMENT_MASK_ANMF) >> 31;
// Copy data
uint8_t *pdata = (uint8_t *)address;
for (uint32_t i = 0; i < 8; ++i) { // TODO use DLCtoBytes[hdr->DataLength] for length > 8
*data++ = *pdata++;
}
// Release (free) message from FIFO
*rxa = index;
return 0; // success
}
STATIC void can_rx_irq_handler(uint can_id, uint fifo_id) {
mp_obj_t callback;
pyb_can_obj_t *self;
mp_obj_t irq_reason = MP_OBJ_NEW_SMALL_INT(0);
byte *state;
self = MP_STATE_PORT(pyb_can_obj_all)[can_id - 1];
if (fifo_id == FDCAN_RX_FIFO0) {
callback = self->rxcallback0;
state = &self->rx_state0;
} else {
callback = self->rxcallback1;
state = &self->rx_state1;
}
switch (*state) {
case RX_STATE_FIFO_EMPTY:
__HAL_FDCAN_DISABLE_IT(&self->can, (fifo_id == FDCAN_RX_FIFO0) ?
FDCAN_IT_RX_FIFO0_NEW_MESSAGE : FDCAN_IT_RX_FIFO1_NEW_MESSAGE);
irq_reason = MP_OBJ_NEW_SMALL_INT(0);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_MESSAGE_PENDING:
__HAL_FDCAN_DISABLE_IT(&self->can, (fifo_id == FDCAN_RX_FIFO0) ? FDCAN_IT_RX_FIFO0_FULL : FDCAN_IT_RX_FIFO1_FULL);
__HAL_FDCAN_CLEAR_FLAG(&self->can, (fifo_id == FDCAN_RX_FIFO0) ? FDCAN_FLAG_RX_FIFO0_FULL : FDCAN_FLAG_RX_FIFO1_FULL);
irq_reason = MP_OBJ_NEW_SMALL_INT(1);
*state = RX_STATE_FIFO_FULL;
break;
case RX_STATE_FIFO_FULL:
__HAL_FDCAN_DISABLE_IT(&self->can, (fifo_id == FDCAN_RX_FIFO0) ?
FDCAN_IT_RX_FIFO0_MESSAGE_LOST : FDCAN_IT_RX_FIFO1_MESSAGE_LOST);
__HAL_FDCAN_CLEAR_FLAG(&self->can, (fifo_id == FDCAN_RX_FIFO0) ?
FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST : FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST);
irq_reason = MP_OBJ_NEW_SMALL_INT(2);
*state = RX_STATE_FIFO_OVERFLOW;
break;
case RX_STATE_FIFO_OVERFLOW:
// This should never happen
break;
}
pyb_can_handle_callback(self, fifo_id, callback, irq_reason);
}
#if defined(MICROPY_HW_CAN1_TX)
void FDCAN1_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN1_IT0_IRQn);
}
void FDCAN1_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN1_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_1, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN1_IT1_IRQn);
}
#endif
#if defined(MICROPY_HW_CAN2_TX)
void FDCAN2_IT0_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT0_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO0);
IRQ_EXIT(FDCAN2_IT0_IRQn);
}
void FDCAN2_IT1_IRQHandler(void) {
IRQ_ENTER(FDCAN2_IT1_IRQn);
can_rx_irq_handler(PYB_CAN_2, FDCAN_RX_FIFO1);
IRQ_EXIT(FDCAN2_IT1_IRQn);
}
#endif
#endif // MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN