nrf: Add support for time.ticks_xxx functions using RTC1.

This commit adds time.ticks_ms/us support using RTC1 as the timebase.  It
also adds the time.ticks_add/diff helper functions.  This feature can be
enabled using MICROPY_PY_TIME_TICKS.  If disabled the system uses the
legacy sleep methods and does not have any ticks functions.

In addition support for MICROPY_EVENT_POLL_HOOK was added to the
time.sleep_ms(x) function, making this function more power efficient and
allows support for select.poll/asyncio.  To support this, the RTC's CCR0
was used to schedule a ~1msec event to wakeup the CPU.

Some important notes about the RTC timebase:

- Since the granularity of RTC1's ticks are approx 30usec, time.ticks_us is
not perfect, does not have 1us resolution, but is otherwise quite usable.
For tighter measurments the ticker's 1MHz counter should be used.

- time.ticks_ms(x) should *not* be called in an IRQ with higher prio than
the RTC overflow irq (3).  If so it introduces a race condition and
possibly leads to wrong tick calculations.

See #6171 and #6202.
This commit is contained in:
Martin Fischer 2020-07-02 22:19:00 +02:00 committed by Damien George
parent c2317a3a8d
commit 15574cd665
6 changed files with 174 additions and 8 deletions

View File

@ -52,6 +52,8 @@
#include "i2c.h" #include "i2c.h"
#include "adc.h" #include "adc.h"
#include "rtcounter.h" #include "rtcounter.h"
#include "mphalport.h"
#if MICROPY_PY_MACHINE_HW_PWM #if MICROPY_PY_MACHINE_HW_PWM
#include "pwm.h" #include "pwm.h"
#endif #endif
@ -101,6 +103,9 @@ int main(int argc, char **argv) {
soft_reset: soft_reset:
#if MICROPY_PY_TIME_TICKS
rtc1_init_time_ticks();
#endif
led_init(); led_init();

View File

@ -153,6 +153,13 @@ STATIC mp_obj_t machine_rtc_make_new(const mp_obj_type_t *type, size_t n_args, s
int rtc_id = rtc_find(args[ARG_id].u_obj); int rtc_id = rtc_find(args[ARG_id].u_obj);
#if MICROPY_PY_TIME_TICKS
if (rtc_id == 1) {
// time module uses RTC1, prevent using it
mp_raise_ValueError(MP_ERROR_TEXT("RTC1 reserved by time module"));
}
#endif
// const and non-const part of the RTC object. // const and non-const part of the RTC object.
const machine_rtc_obj_t * self = &machine_rtc_obj[rtc_id]; const machine_rtc_obj_t * self = &machine_rtc_obj[rtc_id];
machine_rtc_config_t *config = self->config; machine_rtc_config_t *config = self->config;

View File

@ -42,6 +42,10 @@ STATIC const mp_rom_map_elem_t time_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_sleep_ms), MP_ROM_PTR(&mp_utime_sleep_ms_obj) }, { MP_ROM_QSTR(MP_QSTR_sleep_ms), MP_ROM_PTR(&mp_utime_sleep_ms_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep_us), MP_ROM_PTR(&mp_utime_sleep_us_obj) }, { MP_ROM_QSTR(MP_QSTR_sleep_us), MP_ROM_PTR(&mp_utime_sleep_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_ms), MP_ROM_PTR(&mp_utime_ticks_ms_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_us), MP_ROM_PTR(&mp_utime_ticks_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_add), MP_ROM_PTR(&mp_utime_ticks_add_obj) },
{ MP_ROM_QSTR(MP_QSTR_ticks_diff), MP_ROM_PTR(&mp_utime_ticks_diff_obj) },
}; };
STATIC MP_DEFINE_CONST_DICT(time_module_globals, time_module_globals_table); STATIC MP_DEFINE_CONST_DICT(time_module_globals, time_module_globals_table);

View File

@ -174,6 +174,9 @@
#define MICROPY_PY_MACHINE_RTCOUNTER (0) #define MICROPY_PY_MACHINE_RTCOUNTER (0)
#endif #endif
#ifndef MICROPY_PY_TIME_TICKS
#define MICROPY_PY_TIME_TICKS (0)
#endif
#define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1) #define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1)
#define MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE (0) #define MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE (0)
@ -317,6 +320,13 @@ extern const struct _mp_obj_module_t ble_module;
/* micro:bit root pointers */ \ /* micro:bit root pointers */ \
void *async_data[2]; \ void *async_data[2]; \
#define MICROPY_EVENT_POLL_HOOK \
do { \
extern void mp_handle_pending(bool); \
mp_handle_pending(true); \
__WFI(); \
} while (0);
#define MP_PLAT_PRINT_STRN(str, len) mp_hal_stdout_tx_strn_cooked(str, len) #define MP_PLAT_PRINT_STRN(str, len) mp_hal_stdout_tx_strn_cooked(str, len)
// We need to provide a declaration/definition of alloca() // We need to provide a declaration/definition of alloca()

View File

@ -35,6 +35,121 @@
#include "nrfx_errors.h" #include "nrfx_errors.h"
#include "nrfx_config.h" #include "nrfx_config.h"
#if MICROPY_PY_TIME_TICKS
#include "nrfx_rtc.h"
#include "nrf_clock.h"
#endif
#if MICROPY_PY_TIME_TICKS
// Use RTC1 for time ticks generation (ms and us) with 32kHz tick resolution
// and overflow handling in RTC IRQ.
#define RTC_TICK_INCREASE_MSEC (33)
#define RTC_RESCHEDULE_CC(rtc, cc_nr, ticks) \
do { \
nrfx_rtc_cc_set(&rtc, cc_nr, nrfx_rtc_counter_get(&rtc) + ticks, true); \
} while (0);
// RTC overflow irq handling notes:
// - If has_overflowed is set it could be before or after COUNTER is read.
// If before then an adjustment must be made, if after then no adjustment is necessary.
// - The before case is when COUNTER is very small (because it just overflowed and was set to zero),
// the after case is when COUNTER is very large (because it's just about to overflow
// but we read it right before it overflows).
// - The extra check for counter is to distinguish these cases. 1<<23 because it's halfway
// between min and max values of COUNTER.
#define RTC1_GET_TICKS_ATOMIC(rtc, overflows, counter) \
do { \
rtc.p_reg->INTENCLR = RTC_INTENCLR_OVRFLW_Msk; \
overflows = rtc_overflows; \
counter = rtc.p_reg->COUNTER; \
uint32_t has_overflowed = rtc.p_reg->EVENTS_OVRFLW; \
if (has_overflowed && counter < (1 << 23)) { \
overflows += 1; \
} \
rtc.p_reg->INTENSET = RTC_INTENSET_OVRFLW_Msk; \
} while (0);
nrfx_rtc_t rtc1 = NRFX_RTC_INSTANCE(1);
volatile mp_uint_t rtc_overflows = 0;
const nrfx_rtc_config_t rtc_config_time_ticks = {
.prescaler = 0,
.reliable = 0,
.tick_latency = 0,
#ifdef NRF51
.interrupt_priority = 1,
#else
.interrupt_priority = 3,
#endif
};
STATIC void rtc_irq_time(nrfx_rtc_int_type_t event) {
// irq handler for overflow
if (event == NRFX_RTC_INT_OVERFLOW) {
rtc_overflows += 1;
}
// irq handler for wakeup from WFI (~1msec)
if (event == NRFX_RTC_INT_COMPARE0) {
RTC_RESCHEDULE_CC(rtc1, 0, RTC_TICK_INCREASE_MSEC)
}
}
void rtc1_init_time_ticks(void) {
// Start the low-frequency clock (if it hasn't been started already)
if (!nrf_clock_lf_is_running(NRF_CLOCK)) {
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTART);
}
// Uninitialize first, then set overflow IRQ and first CC event
nrfx_rtc_uninit(&rtc1);
nrfx_rtc_init(&rtc1, &rtc_config_time_ticks, rtc_irq_time);
nrfx_rtc_overflow_enable(&rtc1, true);
RTC_RESCHEDULE_CC(rtc1, 0, RTC_TICK_INCREASE_MSEC)
nrfx_rtc_enable(&rtc1);
}
mp_uint_t mp_hal_ticks_ms(void) {
// Compute: (rtc_overflows << 24 + COUNTER) * 1000 / 32768
//
// Note that COUNTER * 1000 / 32768 would overflow during calculation, so use
// the less obvious * 125 / 4096 calculation (overflow secure).
//
// Make sure not to call this function within an irq with higher prio than the
// RTC's irq. This would introduce the danger of preempting the RTC irq and
// calling mp_hal_ticks_ms() at that time would return a false result.
uint32_t overflows;
uint32_t counter;
// guard against overflow irq
RTC1_GET_TICKS_ATOMIC(rtc1, overflows, counter)
return (overflows << 9) * 1000 + (counter * 125 / 4096);
}
mp_uint_t mp_hal_ticks_us(void) {
// Compute: ticks_us = (overflows << 24 + counter) * 1000000 / 32768
// = (overflows << 15 * 15625) + (counter * 15625 / 512)
// Since this function is likely to be called in a poll loop it must
// be fast, using an optimized 64bit mult/divide.
uint32_t overflows;
uint32_t counter;
// guard against overflow irq
RTC1_GET_TICKS_ATOMIC(rtc1, overflows, counter)
// first compute counter * 15625
uint32_t counter_lo = (counter & 0xffff) * 15625;
uint32_t counter_hi = (counter >> 16) * 15625;
// actual value is counter_hi << 16 + counter_lo
return ((overflows << 15) * 15625) + ((counter_hi << 7) + (counter_lo >> 9));
}
#else
mp_uint_t mp_hal_ticks_ms(void) {
return 0;
}
#endif
// this table converts from HAL_StatusTypeDef to POSIX errno // this table converts from HAL_StatusTypeDef to POSIX errno
const byte mp_hal_status_to_errno_table[4] = { const byte mp_hal_status_to_errno_table[4] = {
[HAL_OK] = 0, [HAL_OK] = 0,
@ -70,7 +185,7 @@ int mp_hal_stdin_rx_chr(void) {
if (MP_STATE_PORT(board_stdio_uart) != NULL && uart_rx_any(MP_STATE_PORT(board_stdio_uart))) { if (MP_STATE_PORT(board_stdio_uart) != NULL && uart_rx_any(MP_STATE_PORT(board_stdio_uart))) {
return uart_rx_char(MP_STATE_PORT(board_stdio_uart)); return uart_rx_char(MP_STATE_PORT(board_stdio_uart));
} }
__WFI(); MICROPY_EVENT_POLL_HOOK
} }
return 0; return 0;
@ -93,6 +208,31 @@ void mp_hal_stdout_tx_str(const char *str) {
mp_hal_stdout_tx_strn(str, strlen(str)); mp_hal_stdout_tx_strn(str, strlen(str));
} }
#if MICROPY_PY_TIME_TICKS
void mp_hal_delay_us(mp_uint_t us) {
uint32_t now;
if (us == 0) {
return;
}
now = mp_hal_ticks_us();
while (mp_hal_ticks_us() - now < us) {
}
}
void mp_hal_delay_ms(mp_uint_t ms) {
uint32_t now;
if (ms == 0) {
return;
}
now = mp_hal_ticks_ms();
while (mp_hal_ticks_ms() - now < ms) {
MICROPY_EVENT_POLL_HOOK
}
}
#else
void mp_hal_delay_us(mp_uint_t us) { void mp_hal_delay_us(mp_uint_t us) {
if (us == 0) { if (us == 0) {
return; return;
@ -175,6 +315,7 @@ void mp_hal_delay_ms(mp_uint_t ms) {
mp_hal_delay_us(999); mp_hal_delay_us(999);
} }
} }
#endif
#if defined(NRFX_LOG_ENABLED) && (NRFX_LOG_ENABLED == 1) #if defined(NRFX_LOG_ENABLED) && (NRFX_LOG_ENABLED == 1)

View File

@ -41,12 +41,6 @@ typedef enum
HAL_TIMEOUT = 0x03 HAL_TIMEOUT = 0x03
} HAL_StatusTypeDef; } HAL_StatusTypeDef;
static inline uint32_t hal_tick_fake(void) {
return 0;
}
#define mp_hal_ticks_ms hal_tick_fake // TODO: implement. Right now, return 0 always
extern const unsigned char mp_hal_status_to_errno_table[4]; extern const unsigned char mp_hal_status_to_errno_table[4];
NORETURN void mp_hal_raise(HAL_StatusTypeDef status); NORETURN void mp_hal_raise(HAL_StatusTypeDef status);
@ -70,10 +64,15 @@ const char *nrfx_error_code_lookup(uint32_t err_code);
#define mp_hal_pin_od_high(p) mp_hal_pin_high(p) #define mp_hal_pin_od_high(p) mp_hal_pin_high(p)
#define mp_hal_pin_open_drain(p) nrf_gpio_cfg_input(p->pin, NRF_GPIO_PIN_NOPULL) #define mp_hal_pin_open_drain(p) nrf_gpio_cfg_input(p->pin, NRF_GPIO_PIN_NOPULL)
#if MICROPY_PY_TIME_TICKS
void rtc1_init_time_ticks();
#else
mp_uint_t mp_hal_ticks_ms(void);
#define mp_hal_ticks_us() (0)
#endif
// TODO: empty implementation for now. Used by machine_spi.c:69 // TODO: empty implementation for now. Used by machine_spi.c:69
#define mp_hal_delay_us_fast(p) #define mp_hal_delay_us_fast(p)
#define mp_hal_ticks_us() (0)
#define mp_hal_ticks_cpu() (0) #define mp_hal_ticks_cpu() (0)
#endif #endif