stmhal: Update and improve LCD driver.

Still some method names to iron out, and funtionality to add, but this
will do for the first, basic version.
This commit is contained in:
Damien George 2014-06-15 00:41:47 +01:00
parent 0294661da5
commit 34ab8dd6dd
8 changed files with 404 additions and 355 deletions

View File

@ -39,376 +39,430 @@
#include "obj.h"
#include "runtime.h"
#include "systick.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "spi.h"
#include "font_petme128_8x8.h"
#include "lcd.h"
#if defined(PYBV3)
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_PIN_0)
#define PYB_LCD_RST_PIN (GPIO_PIN_1)
#define PYB_LCD_A0_PIN (GPIO_PIN_2)
#define PYB_LCD_SCL_PIN (GPIO_PIN_3)
#define PYB_LCD_SI_PIN (GPIO_PIN_4)
#elif defined(PYBV4) || defined(PYBV10)
// X position
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_PIN_2) // X3
#define PYB_LCD_RST_PIN (GPIO_PIN_3) // X4
#define PYB_LCD_A0_PIN (GPIO_PIN_4) // X5
#define PYB_LCD_SCL_PIN (GPIO_PIN_5) // X6
#define PYB_LCD_SI_PIN (GPIO_PIN_7) // X8
#define PYB_LCD_BL_PORT (GPIOC)
#define PYB_LCD_BL_PIN (GPIO_PIN_5) // X12
/*
// Y position
#define PYB_LCD_PORT (GPIOB)
#define PYB_LCD_CS1_PIN (GPIO_PIN_8) // Y3 = PB8
#define PYB_LCD_RST_PIN (GPIO_PIN_9) // Y4 = PB9
#define PYB_LCD_A0_PIN (GPIO_PIN_12) // Y5 = PB12
#define PYB_LCD_SCL_PIN (GPIO_PIN_13) // Y6 = PB13
#define PYB_LCD_SI_PIN (GPIO_PIN_15) // Y8 = PB15
#define PYB_LCD_BL_PORT (GPIOB)
#define PYB_LCD_BL_PIN (GPIO_PIN_1) // Y12 = PB1
*/
#elif defined(STM32F4DISC)
/* Configure if needed */
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_PIN_2) // X3
#define PYB_LCD_RST_PIN (GPIO_PIN_3) // X4
#define PYB_LCD_A0_PIN (GPIO_PIN_4) // X5
#define PYB_LCD_SCL_PIN (GPIO_PIN_5) // X6
#define PYB_LCD_SI_PIN (GPIO_PIN_7) // X8
#define PYB_LCD_BL_PORT (GPIOC)
#define PYB_LCD_BL_PIN (GPIO_PIN_5) // X12
#endif
#define LCD_INSTR (0)
#define LCD_DATA (1)
static void lcd_delay(void) {
#define LCD_CHAR_BUF_W (16)
#define LCD_CHAR_BUF_H (4)
#define LCD_PIX_BUF_W (128)
#define LCD_PIX_BUF_H (32)
#define LCD_PIX_BUF_BYTE_SIZE (LCD_PIX_BUF_W * LCD_PIX_BUF_H / 8)
typedef struct _pyb_lcd_obj_t {
mp_obj_base_t base;
// hardware control for the LCD
SPI_HandleTypeDef *spi;
const pin_obj_t *pin_cs1;
const pin_obj_t *pin_rst;
const pin_obj_t *pin_a0;
const pin_obj_t *pin_bl;
// character buffer for stdout-like output
char char_buffer[LCD_CHAR_BUF_W * LCD_CHAR_BUF_H];
int line;
int column;
int next_line;
// double buffering for pixel buffer
byte pix_buf[LCD_PIX_BUF_BYTE_SIZE];
byte pix_buf2[LCD_PIX_BUF_BYTE_SIZE];
} pyb_lcd_obj_t;
STATIC void lcd_delay(void) {
__asm volatile ("nop\nnop");
}
static void lcd_out(int instr_data, uint8_t i) {
STATIC void lcd_out(pyb_lcd_obj_t *lcd, int instr_data, uint8_t i) {
lcd_delay();
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
lcd->pin_cs1->gpio->BSRRH = lcd->pin_cs1->pin_mask; // CS=0; enable
if (instr_data == LCD_INSTR) {
PYB_LCD_PORT->BSRRH = PYB_LCD_A0_PIN; // A0=0; select instr reg
lcd->pin_a0->gpio->BSRRH = lcd->pin_a0->pin_mask; // A0=0; select instr reg
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
lcd->pin_a0->gpio->BSRRL = lcd->pin_a0->pin_mask; // A0=1; select data reg
}
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
lcd_delay();
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
lcd_delay();
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
lcd_delay();
HAL_SPI_Transmit(lcd->spi, &i, 1, 1000);
}
/*
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
}
*/
// writes 8 vertical pixels
// pos 0 is upper left, pos 1 is 8 pixels to right of that, pos 128 is 8 pixels below that
mp_obj_t lcd_draw_pixel_8(mp_obj_t mp_pos, mp_obj_t mp_val) {
int pos = mp_obj_get_int(mp_pos);
int val = mp_obj_get_int(mp_val);
int page = pos / 128;
int offset = pos - (page * 128);
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
lcd_out(LCD_DATA, val); // write data
return mp_const_none;
}
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_char_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
#define LCD_PIX_BUF_SIZE (128 * 32 / 8)
byte lcd_pix_buf[LCD_PIX_BUF_SIZE];
byte lcd_pix_buf2[LCD_PIX_BUF_SIZE];
mp_obj_t lcd_pix_clear(void) {
memset(lcd_pix_buf, 0, LCD_PIX_BUF_SIZE);
memset(lcd_pix_buf2, 0, LCD_PIX_BUF_SIZE);
return mp_const_none;
}
mp_obj_t lcd_pix_get(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (lcd_pix_buf[byte_pos] & (1 << (y & 7))) {
return mp_obj_new_int(1);
}
}
return mp_obj_new_int(0);
}
mp_obj_t lcd_pix_set(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
lcd_pix_buf2[byte_pos] |= 1 << (y & 7);
}
return mp_const_none;
}
mp_obj_t lcd_pix_reset(mp_obj_t mp_x, mp_obj_t mp_y) {
int x = mp_obj_get_int(mp_x);
int y = mp_obj_get_int(mp_y);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
lcd_pix_buf2[byte_pos] &= ~(1 << (y & 7));
}
return mp_const_none;
}
mp_obj_t lcd_pix_show(void) {
memcpy(lcd_pix_buf, lcd_pix_buf2, LCD_PIX_BUF_SIZE);
for (uint page = 0; page < 4; page++) {
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10); // column address set upper; 0
lcd_out(LCD_INSTR, 0x00); // column address set lower; 0
for (uint i = 0; i < 128; i++) {
lcd_out(LCD_DATA, lcd_pix_buf[i + 128 * page]);
}
}
return mp_const_none;
}
mp_obj_t lcd_print(mp_obj_t text) {
uint len;
const char *data = mp_obj_str_get_data(text, &len);
lcd_print_strn(data, len);
return mp_const_none;
}
mp_obj_t lcd_light(mp_obj_t value) {
#if defined(PYB_LCD_BL_PORT)
if (mp_obj_is_true(value)) {
PYB_LCD_BL_PORT->BSRRL = PYB_LCD_BL_PIN; // set pin high to turn backlight on
} else {
PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN; // set pin low to turn backlight off
}
#endif
return mp_const_none;
}
static mp_obj_t mp_lcd = MP_OBJ_NULL;
static mp_obj_t pyb_lcd_init(void) {
if (mp_lcd != MP_OBJ_NULL) {
// already init'd
return mp_lcd;
}
// set the outputs high
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN;
// make them push/pull outputs
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Pin = PYB_LCD_CS1_PIN | PYB_LCD_RST_PIN | PYB_LCD_A0_PIN | PYB_LCD_SCL_PIN | PYB_LCD_SI_PIN;
HAL_GPIO_Init(PYB_LCD_PORT, &GPIO_InitStructure);
#if defined(PYB_LCD_BL_PORT)
// backlight drive pin, starts low (off)
PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN;
GPIO_InitStructure.Pin = PYB_LCD_BL_PIN;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(PYB_LCD_BL_PORT, &GPIO_InitStructure);
#endif
// init the LCD
HAL_Delay(1); // wait a bit
PYB_LCD_PORT->BSRRH = PYB_LCD_RST_PIN; // RST=0; reset
HAL_Delay(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN; // RST=1; enable
HAL_Delay(1); // wait for reset; 2us min
lcd_out(LCD_INSTR, 0xa0); // ADC select, normal
lcd_out(LCD_INSTR, 0xc8); // common output mode select, reverse
lcd_out(LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
lcd_out(LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_out(LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_out(LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(LCD_INSTR, 0x34); // electronic volume register set, 0b110100
lcd_out(LCD_INSTR, 0x40); // display start line set, 0
lcd_out(LCD_INSTR, 0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10); // column address set upper
lcd_out(LCD_INSTR, 0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_out(LCD_DATA, 0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_char_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
// Micro Python interface
mp_obj_t o = mp_obj_new_type(MP_QSTR_LCD, mp_const_empty_tuple, mp_obj_new_dict(0));
mp_store_attr(o, qstr_from_str("lcd8"), mp_make_function_n(2, lcd_draw_pixel_8));
mp_store_attr(o, qstr_from_str("clear"), mp_make_function_n(0, lcd_pix_clear));
mp_store_attr(o, qstr_from_str("get"), mp_make_function_n(2, lcd_pix_get));
mp_store_attr(o, qstr_from_str("set"), mp_make_function_n(2, lcd_pix_set));
mp_store_attr(o, qstr_from_str("reset"), mp_make_function_n(2, lcd_pix_reset));
mp_store_attr(o, qstr_from_str("show"), mp_make_function_n(0, lcd_pix_show));
mp_store_attr(o, qstr_from_str("text"), mp_make_function_n(1, lcd_print));
mp_store_attr(o, qstr_from_str("light"), mp_make_function_n(1, lcd_light));
mp_lcd = o;
return o;
}
static MP_DEFINE_CONST_FUN_OBJ_0(pyb_lcd_init_obj, pyb_lcd_init);
void lcd_init(void) {
mp_lcd = MP_OBJ_NULL;
mp_store_name(qstr_from_str("LCD"), (mp_obj_t)&pyb_lcd_init_obj);
}
void lcd_print_str(const char *str) {
lcd_print_strn(str, strlen(str));
}
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
// write a string to the LCD at the current cursor location
// output it straight away (doesn't use the pixel buffer)
STATIC void lcd_write_strn(pyb_lcd_obj_t *lcd, const char *str, unsigned int len) {
int redraw_min = lcd->line * LCD_CHAR_BUF_W + lcd->column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
if (lcd->next_line) {
if (lcd->line + 1 < LCD_CHAR_BUF_H) {
lcd->line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_char_buffer[i] = lcd_char_buffer[i + LCD_BUF_W];
lcd->line = LCD_CHAR_BUF_H - 1;
for (int i = 0; i < LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1); i++) {
lcd->char_buffer[i] = lcd->char_buffer[i + LCD_CHAR_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_char_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
for (int i = 0; i < LCD_CHAR_BUF_W; i++) {
lcd->char_buffer[LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
redraw_max = LCD_CHAR_BUF_W * LCD_CHAR_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
lcd->next_line = 0;
lcd->column = 0;
}
if (*str == '\n') {
lcd_next_line = 1;
lcd->next_line = 1;
} else if (*str == '\r') {
lcd_column = 0;
lcd->column = 0;
} else if (*str == '\b') {
if (lcd_column > 0) {
lcd_column--;
if (lcd->column > 0) {
lcd->column--;
redraw_min = 0; // could optimise this to not redraw everything
}
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
} else if (lcd->column >= LCD_CHAR_BUF_W) {
lcd->next_line = 1;
str -= 1;
len += 1;
} else {
lcd_char_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
lcd->char_buffer[lcd->line * LCD_CHAR_BUF_W + lcd->column] = *str;
lcd->column += 1;
int max = lcd->line * LCD_CHAR_BUF_W + lcd->column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
// we must draw upside down, because the LCD is upside down
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_char_buffer[i];
uint page = i / LCD_CHAR_BUF_W;
uint offset = 8 * (LCD_CHAR_BUF_W - 1 - (i - (page * LCD_CHAR_BUF_W)));
lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(lcd, LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(lcd, LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
int chr = lcd->char_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int j = 0; j < 8; j++) {
lcd_out(LCD_DATA, chr_data[j]);
for (int j = 7; j >= 0; j--) {
lcd_out(lcd, LCD_DATA, chr_data[j]);
}
}
if (did_new_line) {
HAL_Delay(50);
}
}
STATIC mp_obj_t pyb_lcd_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// get LCD position
const char *lcd_id = mp_obj_str_get_str(args[0]);
// create lcd object
pyb_lcd_obj_t *lcd = m_new_obj(pyb_lcd_obj_t);
lcd->base.type = &pyb_lcd_type;
// configure pins
// TODO accept an SPI object and pin objects for full customisation
if ((lcd_id[0] | 0x20) == 'x' && lcd_id[1] == '\0') {
lcd->spi = &SPIHandle1;
lcd->pin_cs1 = &pin_A2; // X3
lcd->pin_rst = &pin_A3; // X4
lcd->pin_a0 = &pin_A4; // X5
lcd->pin_bl = &pin_C5; // X12
} else if ((lcd_id[0] | 0x20) == 'y' && lcd_id[1] == '\0') {
lcd->spi = &SPIHandle2;
lcd->pin_cs1 = &pin_B8; // Y3
lcd->pin_rst = &pin_B9; // Y4
lcd->pin_a0 = &pin_B12; // Y5
lcd->pin_bl = &pin_B1; // Y12
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LCD bus '%s' does not exist", lcd_id));
}
// init the SPI bus
SPI_InitTypeDef *init = &lcd->spi->Init;
init->Mode = SPI_MODE_MASTER;
// compute the baudrate prescaler from the desired baudrate
// select a prescaler that yields at most the desired baudrate
uint spi_clock;
if (lcd->spi->Instance == SPI1) {
// SPI1 is on APB2
spi_clock = HAL_RCC_GetPCLK2Freq();
} else {
// SPI2 and SPI3 are on APB1
spi_clock = HAL_RCC_GetPCLK1Freq();
}
uint br_prescale = spi_clock / 16000000; // datasheet says LCD can run at 20MHz, but we go for 16MHz
if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; }
else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; }
else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; }
else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; }
else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; }
else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; }
else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }
// data is sent bigendian, latches on rising clock
init->CLKPolarity = SPI_POLARITY_HIGH;
init->CLKPhase = SPI_PHASE_2EDGE;
init->Direction = SPI_DIRECTION_2LINES;
init->DataSize = SPI_DATASIZE_8BIT;
init->NSS = SPI_NSS_SOFT;
init->FirstBit = SPI_FIRSTBIT_MSB;
init->TIMode = SPI_TIMODE_DISABLED;
init->CRCCalculation = SPI_CRCCALCULATION_DISABLED;
init->CRCPolynomial = 0;
// init the SPI bus
spi_init(lcd->spi);
// set the pins to default values
lcd->pin_cs1->gpio->BSRRL = lcd->pin_cs1->pin_mask;
lcd->pin_rst->gpio->BSRRL = lcd->pin_rst->pin_mask;
lcd->pin_a0->gpio->BSRRL = lcd->pin_a0->pin_mask;
lcd->pin_bl->gpio->BSRRH = lcd->pin_bl->pin_mask;
// init the pins to be push/pull outputs
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Pin = lcd->pin_cs1->pin_mask;
HAL_GPIO_Init(lcd->pin_cs1->gpio, &GPIO_InitStructure);
GPIO_InitStructure.Pin = lcd->pin_rst->pin_mask;
HAL_GPIO_Init(lcd->pin_rst->gpio, &GPIO_InitStructure);
GPIO_InitStructure.Pin = lcd->pin_a0->pin_mask;
HAL_GPIO_Init(lcd->pin_a0->gpio, &GPIO_InitStructure);
GPIO_InitStructure.Pin = lcd->pin_bl->pin_mask;
HAL_GPIO_Init(lcd->pin_bl->gpio, &GPIO_InitStructure);
// init the LCD
HAL_Delay(1); // wait a bit
lcd->pin_rst->gpio->BSRRH = lcd->pin_rst->pin_mask; // RST=0; reset
HAL_Delay(1); // wait for reset; 2us min
lcd->pin_rst->gpio->BSRRL = lcd->pin_rst->pin_mask; // RST=1; enable
HAL_Delay(1); // wait for reset; 2us min
lcd_out(lcd, LCD_INSTR, 0xa0); // ADC select, normal
lcd_out(lcd, LCD_INSTR, 0xc0); // common output mode select, normal (this flips the display)
lcd_out(lcd, LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
lcd_out(lcd, LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_out(lcd, LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_out(lcd, LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(lcd, LCD_INSTR, 0x28); // electronic volume register set
lcd_out(lcd, LCD_INSTR, 0x40); // display start line set, 0
lcd_out(lcd, LCD_INSTR, 0xaf); // LCD display, on
// clear LCD RAM
for (int page = 0; page < 4; page++) {
lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(lcd, LCD_INSTR, 0x10); // column address set upper
lcd_out(lcd, LCD_INSTR, 0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_out(lcd, LCD_DATA, 0x00);
}
}
// clear local char buffer
memset(lcd->char_buffer, ' ', LCD_CHAR_BUF_H * LCD_CHAR_BUF_W);
lcd->line = 0;
lcd->column = 0;
lcd->next_line = 0;
// clear local pixel buffer
memset(lcd->pix_buf, 0, LCD_PIX_BUF_BYTE_SIZE);
memset(lcd->pix_buf2, 0, LCD_PIX_BUF_BYTE_SIZE);
return lcd;
}
STATIC mp_obj_t pyb_lcd_command(mp_obj_t self_in, mp_obj_t instr_data_in, mp_obj_t val) {
pyb_lcd_obj_t *self = self_in;
// get whether instr or data
int instr_data = mp_obj_get_int(instr_data_in);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(val, &bufinfo, data);
// send the data
for (uint i = 0; i < bufinfo.len; i++) {
lcd_out(self, instr_data, ((byte*)bufinfo.buf)[i]);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_command_obj, pyb_lcd_command);
STATIC mp_obj_t pyb_lcd_contrast(mp_obj_t self_in, mp_obj_t contrast_in) {
pyb_lcd_obj_t *self = self_in;
int contrast = mp_obj_get_int(contrast_in);
if (contrast < 0) {
contrast = 0;
} else if (contrast > 0x2f) {
contrast = 0x2f;
}
lcd_out(self, LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(self, LCD_INSTR, contrast); // electronic volume register set
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_contrast_obj, pyb_lcd_contrast);
STATIC mp_obj_t pyb_lcd_light(mp_obj_t self_in, mp_obj_t value) {
pyb_lcd_obj_t *self = self_in;
if (mp_obj_is_true(value)) {
self->pin_bl->gpio->BSRRL = self->pin_bl->pin_mask; // set pin high to turn backlight on
} else {
self->pin_bl->gpio->BSRRH = self->pin_bl->pin_mask; // set pin low to turn backlight off
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_light_obj, pyb_lcd_light);
STATIC mp_obj_t pyb_lcd_write(mp_obj_t self_in, mp_obj_t str) {
pyb_lcd_obj_t *self = self_in;
uint len;
const char *data = mp_obj_str_get_data(str, &len);
lcd_write_strn(self, data, len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_write_obj, pyb_lcd_write);
STATIC mp_obj_t pyb_lcd_fill(mp_obj_t self_in, mp_obj_t col_in) {
pyb_lcd_obj_t *self = self_in;
int col = mp_obj_get_int(col_in);
if (col) {
col = 0xff;
}
memset(self->pix_buf, col, LCD_PIX_BUF_BYTE_SIZE);
memset(self->pix_buf2, col, LCD_PIX_BUF_BYTE_SIZE);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_fill_obj, pyb_lcd_fill);
STATIC mp_obj_t pyb_lcd_get(mp_obj_t self_in, mp_obj_t x_in, mp_obj_t y_in) {
pyb_lcd_obj_t *self = self_in;
int x = mp_obj_get_int(x_in);
int y = mp_obj_get_int(y_in);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (self->pix_buf[byte_pos] & (1 << (y & 7))) {
return mp_obj_new_int(1);
}
}
return mp_obj_new_int(0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_get_obj, pyb_lcd_get);
STATIC mp_obj_t pyb_lcd_pixel(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_lcd_obj_t *self = args[0];
int x = mp_obj_get_int(args[1]);
int y = mp_obj_get_int(args[2]);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (mp_obj_get_int(args[3]) == 0) {
self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
} else {
self->pix_buf2[byte_pos] |= 1 << (y & 7);
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_pixel_obj, 4, 4, pyb_lcd_pixel);
STATIC mp_obj_t pyb_lcd_text(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// extract arguments
pyb_lcd_obj_t *self = args[0];
uint len;
const char *data = mp_obj_str_get_data(args[1], &len);
int x0 = mp_obj_get_int(args[2]);
int y0 = mp_obj_get_int(args[3]);
int col = mp_obj_get_int(args[4]);
// loop over chars
for (const char *top = data + len; data < top; data++) {
// get char and make sure its in range of font
uint chr = *(byte*)data;
if (chr < 32 || chr > 127) {
chr = 127;
}
// get char data
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
// loop over char data
for (uint j = 0; j < 8; j++, x0++) {
if (0 <= x0 && x0 < LCD_PIX_BUF_W) { // clip x
uint vline_data = chr_data[j]; // each byte of char data is a vertical column of 8 pixels, LSB at top
for (int y = y0; vline_data; vline_data >>= 1, y++) { // scan over vertical column
if (vline_data & 1) { // only draw if pixel set
if (0 <= y && y < LCD_PIX_BUF_H) { // clip y
uint byte_pos = x0 + LCD_PIX_BUF_W * ((uint)y >> 3);
if (col == 0) {
// clear pixel
self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
} else {
// set pixel
self->pix_buf2[byte_pos] |= 1 << (y & 7);
}
}
}
}
}
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_text_obj, 5, 5, pyb_lcd_text);
STATIC mp_obj_t pyb_lcd_show(mp_obj_t self_in) {
pyb_lcd_obj_t *self = self_in;
memcpy(self->pix_buf, self->pix_buf2, LCD_PIX_BUF_BYTE_SIZE);
for (uint page = 0; page < 4; page++) {
lcd_out(self, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(self, LCD_INSTR, 0x10); // column address set upper; 0
lcd_out(self, LCD_INSTR, 0x00); // column address set lower; 0
for (uint i = 0; i < 128; i++) {
lcd_out(self, LCD_DATA, self->pix_buf[128 * page + 127 - i]);
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_lcd_show_obj, pyb_lcd_show);
STATIC const mp_map_elem_t pyb_lcd_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_command), (mp_obj_t)&pyb_lcd_command_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_contrast), (mp_obj_t)&pyb_lcd_contrast_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_light), (mp_obj_t)&pyb_lcd_light_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_lcd_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fill), (mp_obj_t)&pyb_lcd_fill_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_get), (mp_obj_t)&pyb_lcd_get_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pixel), (mp_obj_t)&pyb_lcd_pixel_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_text), (mp_obj_t)&pyb_lcd_text_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_show), (mp_obj_t)&pyb_lcd_show_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_lcd_locals_dict, pyb_lcd_locals_dict_table);
const mp_obj_type_t pyb_lcd_type = {
{ &mp_type_type },
.name = MP_QSTR_LCD,
.make_new = pyb_lcd_make_new,
.locals_dict = (mp_obj_t)&pyb_lcd_locals_dict,
};
#endif // MICROPY_HW_HAS_LCD

View File

@ -24,6 +24,4 @@
* THE SOFTWARE.
*/
void lcd_init(void);
void lcd_print_str(const char *str);
void lcd_print_strn(const char *str, unsigned int len);
extern const mp_obj_type_t pyb_lcd_type;

View File

@ -58,7 +58,6 @@
#include "storage.h"
#include "sdcard.h"
#include "ff.h"
#include "lcd.h"
#include "rng.h"
#include "accel.h"
#include "servo.h"
@ -95,10 +94,6 @@ void __fatal_error(const char *msg) {
led_state(4, 1);
stdout_tx_strn("\nFATAL ERROR:\n", 14);
stdout_tx_strn(msg, strlen(msg));
#if 0 && MICROPY_HW_HAS_LCD
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
#endif
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 10000000; delay++) {
@ -333,11 +328,6 @@ soft_reset:
pin_init();
extint_init();
#if MICROPY_HW_HAS_LCD
// LCD init (just creates class, init hardware by calling LCD())
lcd_init();
#endif
// local filesystem init
{
// try to mount the flash

View File

@ -54,6 +54,7 @@
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "lcd.h"
#include "usb.h"
#include "ff.h"
#include "portmodules.h"
@ -390,6 +391,10 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
#if MICROPY_HW_HAS_MMA7660
{ MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
#if MICROPY_HW_HAS_LCD
{ MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
};
STATIC const mp_obj_dict_t pyb_module_globals = {

View File

@ -196,23 +196,13 @@ int pfenv_printf(const pfenv_t *pfenv, const char *fmt, va_list args) {
}
void stdout_print_strn(void *data, const char *str, unsigned int len) {
// send stdout to UART, USB CDC VCP, and LCD if nothing else
bool any = false;
// TODO this needs to be replaced with a proper stdio interface ala CPython
// send stdout to UART and USB CDC VCP
if (pyb_uart_global_debug != PYB_UART_NONE) {
uart_tx_strn_cooked(pyb_uart_global_debug, str, len);
any = true;
}
if (usb_vcp_is_enabled()) {
usb_vcp_send_strn_cooked(str, len);
any = true;
}
if (!any) {
#if 0
#if MICROPY_HW_HAS_LCD
lcd_print_strn(str, len);
#endif
#endif
}
}

View File

@ -38,11 +38,14 @@
#include "usb.h"
#include "uart.h"
// TODO make stdin, stdout and stderr writable objects so they can
// be changed by Python code.
void stdout_tx_str(const char *str) {
if (pyb_uart_global_debug != PYB_UART_NONE) {
uart_tx_str(pyb_uart_global_debug, str);
}
#if defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD
#if 0 && defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD
lcd_print_str(str);
#endif
usb_vcp_send_str(str);
@ -52,7 +55,7 @@ void stdout_tx_strn(const char *str, uint len) {
if (pyb_uart_global_debug != PYB_UART_NONE) {
uart_tx_strn(pyb_uart_global_debug, str, len);
}
#if defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD
#if 0 && defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD
lcd_print_strn(str, len);
#endif
usb_vcp_send_strn(str, len);

View File

@ -57,7 +57,6 @@ Q(have_cdc)
Q(hid)
Q(time)
Q(rng)
Q(LCD)
Q(SD)
Q(SDcard)
Q(FileIO)
@ -247,6 +246,17 @@ Q(sleep)
// for input
Q(input)
// for LCD class
Q(LCD)
Q(command)
Q(contrast)
Q(light)
Q(fill)
Q(get)
Q(pixel)
Q(text)
Q(show)
// for stm module
Q(stm)
Q(mem)

View File

@ -199,7 +199,6 @@ void USR_KEYBRD_ProcessData(uint8_t pbuf) {
led_state(4, 1);
USB_OTG_BSP_mDelay(50);
led_state(4, 0);
//lcd_print_strn((char*)&pbuf, 1);
usb_keyboard_key = pbuf;
}