py/parsenum: Ensure that trailing zeros lead to identical results.

Prior to this commit, parsenum would calculate "1e-20" as 1.0*pow(10, -20),
and "1.000e-20" as 1000.0*pow(10, -23); in certain cases, this could make
seemingly-identical values compare as not equal.  This commit watches for
trailing zeros as a special case, and ignores them when appropriate, so
"1.000e-20" is also calculated as 1.0*pow(10, -20).

Fixes issue #5831.
This commit is contained in:
Dan Ellis 2022-07-28 23:21:00 -04:00 committed by Damien George
parent 69719927f1
commit 6cd2e41918
1 changed files with 56 additions and 28 deletions

View File

@ -178,6 +178,44 @@ typedef enum {
PARSE_DEC_IN_EXP, PARSE_DEC_IN_EXP,
} parse_dec_in_t; } parse_dec_in_t;
#if MICROPY_PY_BUILTINS_FLOAT
// DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing
// SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float
// EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float
// Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n
// so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's
// exponent).
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define DEC_VAL_MAX 1e20F
#define SMALL_NORMAL_VAL (1e-37F)
#define SMALL_NORMAL_EXP (-37)
#define EXACT_POWER_OF_10 (9)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define DEC_VAL_MAX 1e200
#define SMALL_NORMAL_VAL (1e-307)
#define SMALL_NORMAL_EXP (-307)
#define EXACT_POWER_OF_10 (22)
#endif
// Break out inner digit accumulation routine to ease trailing zero deferral.
static void accept_digit(mp_float_t *p_dec_val, int dig, int *p_exp_extra, int in) {
// Core routine to ingest an additional digit.
if (*p_dec_val < DEC_VAL_MAX) {
// dec_val won't overflow so keep accumulating
*p_dec_val = 10 * *p_dec_val + dig;
if (in == PARSE_DEC_IN_FRAC) {
--(*p_exp_extra);
}
} else {
// dec_val might overflow and we anyway can't represent more digits
// of precision, so ignore the digit and just adjust the exponent
if (in == PARSE_DEC_IN_INTG) {
++(*p_exp_extra);
}
}
}
#endif // MICROPY_BUILTINS_FLOAT
#if MICROPY_PY_BUILTINS_COMPLEX #if MICROPY_PY_BUILTINS_COMPLEX
mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex)
#else #else
@ -186,24 +224,6 @@ mp_obj_t mp_parse_num_float(const char *str, size_t len, bool allow_imag, mp_lex
{ {
#if MICROPY_PY_BUILTINS_FLOAT #if MICROPY_PY_BUILTINS_FLOAT
// DEC_VAL_MAX only needs to be rough and is used to retain precision while not overflowing
// SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float
// EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float
// Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n
// so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's
// exponent).
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define DEC_VAL_MAX 1e20F
#define SMALL_NORMAL_VAL (1e-37F)
#define SMALL_NORMAL_EXP (-37)
#define EXACT_POWER_OF_10 (9)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define DEC_VAL_MAX 1e200
#define SMALL_NORMAL_VAL (1e-307)
#define SMALL_NORMAL_EXP (-307)
#define EXACT_POWER_OF_10 (22)
#endif
const char *top = str + len; const char *top = str + len;
mp_float_t dec_val = 0; mp_float_t dec_val = 0;
bool dec_neg = false; bool dec_neg = false;
@ -255,6 +275,7 @@ parse_start:
bool exp_neg = false; bool exp_neg = false;
int exp_val = 0; int exp_val = 0;
int exp_extra = 0; int exp_extra = 0;
int trailing_zeros_intg = 0, trailing_zeros_frac = 0;
while (str < top) { while (str < top) {
unsigned int dig = *str++; unsigned int dig = *str++;
if ('0' <= dig && dig <= '9') { if ('0' <= dig && dig <= '9') {
@ -267,18 +288,25 @@ parse_start:
exp_val = 10 * exp_val + dig; exp_val = 10 * exp_val + dig;
} }
} else { } else {
if (dec_val < DEC_VAL_MAX) { if (dig == 0 || dec_val >= DEC_VAL_MAX) {
// dec_val won't overflow so keep accumulating // Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them.
dec_val = 10 * dec_val + dig; // Also, once we reach DEC_VAL_MAX, treat every additional digit as a trailing zero.
if (in == PARSE_DEC_IN_FRAC) { if (in == PARSE_DEC_IN_INTG) {
--exp_extra; ++trailing_zeros_intg;
} else {
++trailing_zeros_frac;
} }
} else { } else {
// dec_val might overflow and we anyway can't represent more digits // Time to un-defer any trailing zeros. Intg zeros first.
// of precision, so ignore the digit and just adjust the exponent while (trailing_zeros_intg) {
if (in == PARSE_DEC_IN_INTG) { accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_INTG);
++exp_extra; --trailing_zeros_intg;
} }
while (trailing_zeros_frac) {
accept_digit(&dec_val, 0, &exp_extra, PARSE_DEC_IN_FRAC);
--trailing_zeros_frac;
}
accept_digit(&dec_val, dig, &exp_extra, in);
} }
} }
} else if (in == PARSE_DEC_IN_INTG && dig == '.') { } else if (in == PARSE_DEC_IN_INTG && dig == '.') {
@ -311,7 +339,7 @@ parse_start:
} }
// apply the exponent, making sure it's not a subnormal value // apply the exponent, making sure it's not a subnormal value
exp_val += exp_extra; exp_val += exp_extra + trailing_zeros_intg;
if (exp_val < SMALL_NORMAL_EXP) { if (exp_val < SMALL_NORMAL_EXP) {
exp_val -= SMALL_NORMAL_EXP; exp_val -= SMALL_NORMAL_EXP;
dec_val *= SMALL_NORMAL_VAL; dec_val *= SMALL_NORMAL_VAL;