stmhal: Add dma support for sdcard.

This started out using IgorLektorovEpam work in PR #1389
and reworked it.
This commit is contained in:
Dave Hylands 2015-11-15 17:26:43 -08:00 committed by Damien George
parent b677f03407
commit 6edffd0df5
1 changed files with 79 additions and 72 deletions

View File

@ -24,8 +24,6 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
// TODO make it work with DMA
#include STM32_HAL_H #include STM32_HAL_H
#include "py/nlr.h" #include "py/nlr.h"
@ -34,6 +32,8 @@
#include "pin.h" #include "pin.h"
#include "genhdr/pins.h" #include "genhdr/pins.h"
#include "bufhelper.h" #include "bufhelper.h"
#include "dma.h"
#include "irq.h"
#if MICROPY_HW_HAS_SDCARD #if MICROPY_HW_HAS_SDCARD
@ -64,8 +64,12 @@
#endif #endif
// TODO: I think that as an optimization, we can allocate these dynamically
// if an sd card is detected. This will save approx 260 bytes of RAM
// when no sdcard was being used.
static SD_HandleTypeDef sd_handle; static SD_HandleTypeDef sd_handle;
static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;
static DMA_InitTypeDef sd_rx_dma_init, sd_tx_dma_init;
void sdcard_init(void) { void sdcard_init(void) {
GPIO_InitTypeDef GPIO_Init_Structure; GPIO_InitTypeDef GPIO_Init_Structure;
@ -98,13 +102,45 @@ void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
// enable SDIO clock // enable SDIO clock
__SDIO_CLK_ENABLE(); __SDIO_CLK_ENABLE();
// GPIO have already been initialised by sdcard_init // NVIC configuration for SDIO interrupts
HAL_NVIC_SetPriority(SDIO_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO);
HAL_NVIC_EnableIRQ(SDIO_IRQn);
// interrupts are not used at the moment // TODO: Since SDIO is fundamentally half-duplex, we really only need to
// they are needed only for DMA transfer (I think...) // tie up one DMA channel. However, the HAL DMA API doesn't
// seem to provide a convenient way to change the direction. I believe that
// its as simple as changing the CR register and the Init.Direction field
// and make DMA_SetConfig public.
// Configure DMA Rx parameters
sd_rx_dma_init.PeriphInc = DMA_PINC_DISABLE;
sd_rx_dma_init.MemInc = DMA_MINC_ENABLE;
sd_rx_dma_init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sd_rx_dma_init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sd_rx_dma_init.Mode = DMA_PFCTRL;
sd_rx_dma_init.Priority = DMA_PRIORITY_VERY_HIGH;
sd_rx_dma_init.FIFOMode = DMA_FIFOMODE_ENABLE;
sd_rx_dma_init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sd_rx_dma_init.MemBurst = DMA_MBURST_INC4;
sd_rx_dma_init.PeriphBurst = DMA_PBURST_INC4;
// Configure DMA Tx parameters
sd_tx_dma_init.PeriphInc = DMA_PINC_DISABLE;
sd_tx_dma_init.MemInc = DMA_MINC_ENABLE;
sd_tx_dma_init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sd_tx_dma_init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sd_tx_dma_init.Mode = DMA_PFCTRL;
sd_tx_dma_init.Priority = DMA_PRIORITY_VERY_HIGH;
sd_tx_dma_init.FIFOMode = DMA_FIFOMODE_ENABLE;
sd_tx_dma_init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sd_tx_dma_init.MemBurst = DMA_MBURST_INC4;
sd_tx_dma_init.PeriphBurst = DMA_PBURST_INC4;
// GPIO have already been initialised by sdcard_init
} }
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
HAL_NVIC_DisableIRQ(SDIO_IRQn);
__SDIO_CLK_DISABLE(); __SDIO_CLK_DISABLE();
} }
@ -168,6 +204,10 @@ uint64_t sdcard_get_capacity_in_bytes(void) {
return cardinfo.CardCapacity; return cardinfo.CardCapacity;
} }
void SDIO_IRQHandler(void) {
HAL_SD_IRQHandler(&sd_handle);
}
mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary // check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) { if (((uint32_t)dest & 3) != 0) {
@ -179,12 +219,23 @@ mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blo
return SD_ERROR; return SD_ERROR;
} }
// We must disable IRQs because the SDIO peripheral has a small FIFO HAL_SD_ErrorTypedef err = SD_OK;
// buffer and we can't let it fill up in the middle of a read.
// This will not be needed when SD uses DMA for transfer. if (query_irq() == IRQ_STATE_ENABLED) {
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); dma_init(&sd_rx_dma, DMA_STREAM_SDIO_RX, &sd_rx_dma_init, DMA_CHANNEL_SDIO_RX, DMA_PERIPH_TO_MEMORY, &sd_handle);
HAL_SD_ErrorTypedef err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks); sd_handle.hdmarx = &sd_rx_dma;
MICROPY_END_ATOMIC_SECTION(atomic_state);
err = HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
if (err == SD_OK) {
// wait for DMA transfer to finish, with a large timeout
err = HAL_SD_CheckReadOperation(&sd_handle, 100000000);
}
dma_deinit(sd_handle.hdmarx);
sd_handle.hdmarx = NULL;
} else {
err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
}
return err; return err;
} }
@ -200,70 +251,26 @@ mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t n
return SD_ERROR; return SD_ERROR;
} }
// We must disable IRQs because the SDIO peripheral has a small FIFO HAL_SD_ErrorTypedef err = SD_OK;
// buffer and we can't let it drain to empty in the middle of a write.
// This will not be needed when SD uses DMA for transfer. if (query_irq() == IRQ_STATE_ENABLED) {
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); dma_init(&sd_tx_dma, DMA_STREAM_SDIO_TX, &sd_tx_dma_init, DMA_CHANNEL_SDIO_TX, DMA_MEMORY_TO_PERIPH, &sd_handle);
HAL_SD_ErrorTypedef err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks); sd_handle.hdmatx = &sd_tx_dma;
MICROPY_END_ATOMIC_SECTION(atomic_state);
err = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
if (err == SD_OK) {
// wait for DMA transfer to finish, with a large timeout
err = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
}
dma_deinit(sd_handle.hdmatx);
sd_handle.hdmatx = NULL;
} else {
err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
}
return err; return err;
} }
#if 0
DMA not implemented
bool sdcard_read_blocks_dma(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
// do the read
if (HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE) != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
if (HAL_SD_CheckReadOperation(&sd_handle, 100000000) != SD_OK) {
return false;
}
return true;
}
bool sdcard_write_blocks_dma(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
SD_Error status;
status = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
if (status != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
status = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
if (status != SD_OK) {
return false;
}
return true;
}
#endif
/******************************************************************************/ /******************************************************************************/
// Micro Python bindings // Micro Python bindings
// //