py/mpz: Add commented-out mpz_pow3_inpl function, to compute (x**y)%z.

This function computes (x**y)%z in an efficient way.  For large arguments
this operation is otherwise not computable by doing x**y and then %z.

It's currently not used, but is added in case it's useful one day.
This commit is contained in:
Damien George 2016-02-03 22:30:49 +00:00
parent 2e2e15cec2
commit ff1a96ce2c
1 changed files with 38 additions and 0 deletions

View File

@ -1374,6 +1374,44 @@ void mpz_pow_inpl(mpz_t *dest, const mpz_t *lhs, const mpz_t *rhs) {
#if 0
these functions are unused
/* computes dest = (lhs ** rhs) % mod
can have dest, lhs, rhs the same; mod can't be the same as dest
*/
void mpz_pow3_inpl(mpz_t *dest, const mpz_t *lhs, const mpz_t *rhs, const mpz_t *mod) {
if (lhs->len == 0 || rhs->neg != 0) {
mpz_set_from_int(dest, 0);
return;
}
if (rhs->len == 0) {
mpz_set_from_int(dest, 1);
return;
}
mpz_t *x = mpz_clone(lhs);
mpz_t *n = mpz_clone(rhs);
mpz_t quo; mpz_init_zero(&quo);
mpz_set_from_int(dest, 1);
while (n->len > 0) {
if ((n->dig[0] & 1) != 0) {
mpz_mul_inpl(dest, dest, x);
mpz_divmod_inpl(&quo, dest, dest, mod);
}
n->len = mpn_shr(n->dig, n->dig, n->len, 1);
if (n->len == 0) {
break;
}
mpz_mul_inpl(x, x, x);
mpz_divmod_inpl(&quo, x, x, mod);
}
mpz_deinit(&quo);
mpz_free(x);
mpz_free(n);
}
/* computes gcd(z1, z2)
based on Knuth's modified gcd algorithm (I think?)
gcd(z1, z2) >= 0