- Changed: ValueError, TypeError, NotImplementedError
- OSError invocations unchanged, because the corresponding utility
function takes ints, not strings like the long form invocation.
- OverflowError, IndexError and RuntimeError etc. not changed for now
until we decide whether to add new utility functions.
This patch changes mp_uint_t to size_t for the len argument of the
following public facing C functions:
mp_obj_tuple_get
mp_obj_list_get
mp_obj_get_array
These functions take a pointer to the len argument (to be filled in by the
function) and callers of these functions should update their code so the
type of len is changed to size_t. For ports that don't use nan-boxing
there should be no change in generate code because the size of the type
remains the same (word sized), and in a lot of cases there won't even be a
compiler warning if the type remains as mp_uint_t.
The reason for this change is to standardise on the use of size_t for
variables that count memory (or memory related) sizes/lengths. It helps
builds that use nan-boxing.
Allows to iterate over the following without allocating on the heap:
- tuple
- list
- string, bytes
- bytearray, array
- dict (not dict.keys, dict.values, dict.items)
- set, frozenset
Allows to call the following without heap memory:
- all, any, min, max, sum
TODO: still need to allocate stack memory in bytecode for iter_buf.
Checks for number of args removes where guaranteed by function descriptor,
self checking is replaced with mp_check_self(). In few cases, exception
is raised instead of assert.
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
Only types whose iterator instances still fit in 4 machine words have
been changed to use the polymorphic iterator.
Reduces Thumb2 arch code size by 264 bytes.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
mp_obj_t internal representation doesn't have to be a pointer to object,
it can be anything.
There's also a support for back-conversion in the form of MP_OBJ_UNCAST.
This is kind of optimization/status quo preserver to minimize patching the
existing code and avoid doing potentially expensive MP_OBJ_CAST over and
over. But then one may imagine implementations where MP_OBJ_UNCAST is very
expensive. But such implementations are unlikely interesting in practice.
This is rarely used feature which takes enough code to implement, so is
controlled by MICROPY_PY_ARRAY_SLICE_ASSIGN config setting, default off.
But otherwise it may be useful, as allows to update arbitrary-sized data
buffers in-place.
Slice is yet to implement, and actually, slice assignment implemented in
such a way that RHS of assignment should be array of the exact same item
typecode as LHS. CPython has it more relaxed, where RHS can be any sequence
of compatible types (e.g. it's possible to assign list of int's to a
bytearray slice).
Overall, when all "slice write" features are implemented, it may cost ~1KB
of code.
This makes exception traceback info self contained (ie doesn't rely on
list object, which was a bit of a hack), reduces code size, and reduces
RAM footprint of exception by eliminating the list object.
Addresses part of issue #1126.
Traceback allocation for exception will now never lead to recursive
MemoryError exception - if there's no memory for traceback, it simply
won't be created.
Multiplication of a tuple, list, str or bytes now yields an empty
sequence (instead of crashing). Addresses issue #799
Also added ability to mult bytes on LHS by integer.
Updated functions now do proper checking that n_kw==0, and are simpler
because they don't have to explicitly raise an exception. Down side is
that the error messages no longer include the function name, but that's
acceptable.
Saves order 300 text bytes on x64 and ARM.