In all cases other than where you have a native base with a protocol, it
now fits into 4 GC blocks (like it did before the slots representation).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The existings mp_obj_type_t uses a sparse representation for slots for the
capability methods of the type (eg print, make_new). This commit adds a
compact slot-index representation. The basic idea is that where the
mp_obj_type_t struct used to have 12 pointer fields, it now has 12 uint8_t
indices, and a variable-length array of pointers. So in the best case (no
fields used) it saves 12x4-12=36 bytes (on a 32-bit machine) and in the
common case (three fields used) it saves 9x4-12=24 bytes.
Overall with all associated changes, this slot-index representation reduces
code size by 1000 to 3000 bytes on bare-metal ports. Performance is
marginally better on a few tests (eg about 1% better on misc_pystone.py and
misc_raytrace.py on PYBv1.1), but overall marginally worse by a percent or
so.
See issue #7542 for further analysis and discussion.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This will always have the maximum/minimum size of a mp_obj_type_t
representation and can be used as a member in other structs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This will allow the structure of mp_obj_type_t to change while keeping the
definition code the same.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The buffer protocol type only has a single member, and this existing layout
creates problems for the upcoming split/slot-index mp_obj_type_t layout
optimisations.
If we need to make the buffer protocol more sophisticated in the future
either we can rely on the mp_obj_type_t optimisations to just add
additional slots to mp_obj_type_t or re-visit the buffer protocol then.
This change is a no-op in terms of generated code.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
All uses of this are either tiny strings or not-known-to-be-safe.
Update comments for mp_obj_new_str_copy and mp_obj_new_str_of_type.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The new `mp_obj_new_str_from_utf8_vstr` can be used when you know you
already have a unicode-safe string.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Now that we have `mp_obj_new_str_type_from_vstr` (private helper used by
objstr.c) split from the public API (`mp_obj_new_str_from_vstr`), we can
enforce a unicode check at the public API without incurring a performance
cost on the various objstr.c methods (which are already working on known
unicode-safe strings).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Previously the desired output type was specified. Now make the type part
of the function name. Because this function is used in a few places this
saves code size due to smaller call-site.
This makes `mp_obj_new_str_type_from_vstr` a private function of objstr.c
(which is almost the only place where the output type isn't a compile-time
constant).
This saves ~140 bytes on PYBV11.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This allows ports to override mp_builtin___import__.
This can be useful in MicroPython applications where
MICROPY_ENABLE_EXTERNAL_IMPORT has to be disabled due to its impact on
build size (2% to 2.5% of the minimal port). By overriding the otherwise
very minimal mp_builtin___import__, ports can still allow limited forms
of application-specific imports.
Signed-off-by: Laurens Valk <laurens@pybricks.com>
Since commit e65d1e69e8 there is no longer an
io.FileIO class, so this option is no longer needed.
This option also controlled whether or not files supported being opened in
binary mode (eg 'rb'), and could, if disabled, lead to confusion as to why
opening a file in binary mode silently did the wrong thing (it would just
open in text mode if MICROPY_PY_IO_FILEIO was disabled).
The various VFS implementations (POSIX, FAT, LFS) were the only places
where enabling this option made a difference, and in almost all cases where
one of these filesystems were enabled, MICROPY_PY_IO_FILEIO was also
enabled. So it makes sense to just unconditionally enable this feature
(ability to open a file in binary mode) in all cases, and so just remove
this config option altogether. That makes configuration simpler and means
binary file support always exists (and opening a file in binary mode is
arguably more fundamental than opening in text mode, so if anything should
be configurable then it should be the ability to open in text mode).
Signed-off-by: Damien George <damien@micropython.org>
Rework the conversion of floats to decimal strings so it aligns precisely
with the conversion of strings to floats in parsenum.c. This is to avoid
rendering 1eX as 9.99999eX-1 etc. This is achieved by removing the power-
of-10 tables and using pow() to compute the exponent directly, and that's
done efficiently by first estimating the power-of-10 exponent from the
power-of-2 exponent in the floating-point representation.
Code size is reduced by roughly 100 to 200 bytes by this commit.
Signed-off-by: Dan Ellis <dan.ellis@gmail.com>
Prior to this commit, parsenum would calculate "1e-20" as 1.0*pow(10, -20),
and "1.000e-20" as 1000.0*pow(10, -23); in certain cases, this could make
seemingly-identical values compare as not equal. This commit watches for
trailing zeros as a special case, and ignores them when appropriate, so
"1.000e-20" is also calculated as 1.0*pow(10, -20).
Fixes issue #5831.
Otherwise if the `mpy-cross/build/` directory doesn't exist then
`mpy-cross/build/..` won't work.
Signed-off-by: Damien George <damien@micropython.org>
Since f7f56d4285 consolidated all uses of
these to a single locals dict, they no longer need to be made public.
Signed-off-by: Damien George <damien@micropython.org>
These were added in Python 3.5.
Enabled via MICROPY_PY_BUILTINS_BYTES_HEX, and enabled by default for all
ports that currently have ubinascii.
Rework ubinascii to use the implementation of these methods.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds the bytes methods to bytearray, matching CPython. The
existing implementations of these methods for str/bytes are reused for
bytearray with minor updates to match CPython return types.
For details on the CPython behaviour see
https://docs.python.org/3/library/stdtypes.html#bytes-and-bytearray-operations
The work to merge locals tables for str/bytes/bytearray/array was done by
@jimmo. Because of this merging of locals the change in code size for this
commit is mostly negative:
bare-arm: +0 +0.000%
minimal x86: +29 +0.018%
unix x64: -792 -0.128% standard[incl -448(data)]
unix nanbox: -436 -0.078% nanbox[incl -448(data)]
stm32: -40 -0.010% PYBV10
cc3200: -32 -0.017%
esp8266: -28 -0.004% GENERIC
esp32: -72 -0.005% GENERIC[incl -200(data)]
mimxrt: -40 -0.011% TEENSY40
renesas-ra: -40 -0.006% RA6M2_EK
nrf: -16 -0.009% pca10040
rp2: -64 -0.013% PICO
samd: +148 +0.105% ADAFRUIT_ITSYBITSY_M4_EXPRESS
The hash is either 8 or 16 bits (depending on MICROPY_QSTR_BYTES_IN_HASH)
so will fit in a size_t.
This saves 268 bytes on the unix nanbox build. Non-nanbox configurations
are unchanged because mp_uint_t is the same size as size_t.
Signed-off-by: Damien George <damien@micropython.org>
Due to inline assembly, wrong instructions were generated. Use
corresponding 32 bit instructions and fix the offsets used.
Signed-off-by: Efi Weiss <efiwiss@gmail.com>
Binaries built using the Make build system now no longer appear in the
working directory of the build, but rather in the build directory. Thus
some paths had to be adjusted.
The rules for lib (static library with name $(LIBMICROPYTHON)) and the
default rule to build a binary (name $(PROG)) produced outputs in the
current working directory. Change this to build these files in the build
directory.
Note: An empty BUILD variable can cause issues (references to the root
directory); this is not addressed by this commit due to multiple other
places having the same issue.
The reallocation trigger for unpacking star args with unknown length
did not take into account the number of fixed args remaining. So it was
possible that the unpacked iterators could take up exactly the memory
allocated then nothing would be left for fixed args after the star args.
This causes a segfault crash.
This is fixed by taking into account the remaining number of fixed args
in the check to decide whether to realloc yet or not.
Signed-off-by: David Lechner <david@pybricks.com>
Formerly, py/formatfloat would print whole numbers inaccurately with
nonzero digits beyond the decimal place. This resulted from its strategy
of successive scaling of the argument by 0.1 which cannot be exactly
represented in floating point. The change in this commit avoids scaling
until the value is smaller than 1, so all whole numbers print with zero
fractional part.
Fixes issue #4212.
Signed-off-by: Dan Ellis dan.ellis@gmail.com
On ports with more than one filesystem, the type will be wrong, for example
if using LFS but FAT enabled, then the type will be FAT. So it's not
possible to use these classes to identify a file object type.
Furthermore, constructing an io.FileIO currently crashes on FAT, and
make_new isn't supported on LFS.
And the io.TextIOWrapper class does not match CPython at all.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit simplifies mp_obj_get_complex_maybe() by first calling
mp_obj_get_float_maybe() to handle the cases corresponding to floats.
Only if that fails does it attempt to extra a full complex number.
This reduces code size and also means that mp_obj_get_complex_maybe() now
supports user-defined classes defining __float__; in particular this allows
user-defined classes to be used as arguments to cmath-module function.
Furthermore, complex_make_new() can now be simplified to directly call
mp_obj_get_complex(), instead of mp_obj_get_complex_maybe() followed by
mp_obj_get_float(). This also improves error messages from complex with
an invalid argument, it now raises "can't convert <type> to complex" rather
than "can't convert <type> to float".
Signed-off-by: Damien George <damien@micropython.org>
Use C macros to reduce the size of firmware images when the GC split-heap
feature is disabled.
The code size difference of this commit versus HEAD~2 (ie the commit prior
to MICROPY_GC_SPLIT_HEAP being introduced) when split-heap is disabled is:
bare-arm: +0 +0.000%
minimal x86: +0 +0.000%
unix x64: -16 -0.003%
unix nanbox: -20 -0.004%
stm32: -8 -0.002% PYBV10
cc3200: +0 +0.000%
esp8266: +8 +0.001% GENERIC
esp32: +0 +0.000% GENERIC
nrf: -20 -0.011% pca10040
rp2: +0 +0.000% PICO
samd: -4 -0.003% ADAFRUIT_ITSYBITSY_M4_EXPRESS
The code size difference of this commit versus HEAD~2 split-heap is enabled
with MICROPY_GC_MULTIHEAP=1 (but no extra code to add more heaps):
unix x64: +1032 +0.197% [incl +544(bss)]
esp32: +592 +0.039% GENERIC[incl +16(data) +264(bss)]
This commit adds a new option MICROPY_GC_SPLIT_HEAP (disabled by default)
which, when enabled, allows the GC heap to be split over multiple memory
areas/regions. The first area is added with gc_init() and subsequent areas
can be added with gc_add(). New areas can be added at runtime. Areas are
stored internally as a linked list, and calls to gc_alloc() can be
satisfied from any area.
This feature has the following use-cases (among others):
- The ESP32 has a fragmented OS heap, so to use all (or more) of it the
GC heap must be split.
- Other MCUs may have disjoint RAM regions and are now able to use them
all for the GC heap.
- The user could explicitly increase the size of the GC heap.
- Support a dynamic heap while running on an OS, adding more heap when
necessary.
This uses MP_REGISTER_ROOT_POINTER() to register sched_queue
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register cur_exception,
sys_exitfunc, mp_sys_path_obj, mp_sys_argv_obj and sys_mutable
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register track_reloc_code_list
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register `bluetooth`
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register vfs_cur and
vfs_mount_table instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register lwip_slip_stream
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register dupterm_objs
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register repl_line
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
All in-tree uses of MICROPY_PORT_ROOT_POINTERS have been replaced with
MP_REGISTER_ROOT_POINTER(), so now we can remove both
MICROPY_PORT_ROOT_POINTERS and MICROPY_BOARD_ROOT_POINTERS from the code
and remaining config files.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register the readline_history root
pointer array used by shared/readline.c and removes the registration from
all mpconfigport.h files.
This also required adding a new MICROPY_READLINE_HISTORY_SIZE config option
since not all ports used the same sized array.
Signed-off-by: David Lechner <david@pybricks.com>
This adds new compile-time infrastructure to parse source code files for
`MP_REGISTER_ROOT_POINTER()` and generates a new `root_pointers.h` header
file containing the collected declarations. This works the same as the
existing `MP_REGISTER_MODULE()` feature.
Signed-off-by: David Lechner <david@pybricks.com>
Zero effect on non debug builds, and also usually optimized out even in
debug builds as mp_obj_is_type() is called with a compile-time known type.
I'm not sure we even have dynamic uses of mp_obj_is_type() at the moment,
but if we ever will they will be protected from now on.
Signed-off-by: Yonatan Goldschmidt <yon.goldschmidt@gmail.com>
Commit d96cfd13e3 introduced a regression by breaking existing
users of mp_obj_is_type(.., &mp_obj_bool). This function (and associated
helpers like mp_obj_is_int()) have some specific nuances, and mistakes like
this one can happen again.
This commit adds mp_obj_is_exact_type() which behaves like the the old
mp_obj_is_type(). The new mp_obj_is_type() has the same prototype but it
attempts to statically assert that it's not called with types which should
be checked using mp_obj_is_type(). If called with any of these types: int,
str, bool, NoneType - it will cause a compilation error. Additional
checked types (e.g function types) can be added in the future.
Existing users of mp_obj_is_type() with the now "invalid" types, were
translated to use mp_obj_is_exact_type().
The use of MP_STATIC_ASSERT() is not bulletproof - usually GCC (and other
compilers) can't statically check conditions that are only known during
link-time (like variables' addresses comparison). However, in this case,
GCC is able to statically detect these conditions, probably because it's
the exact same object - `&mp_type_int == &mp_type_int` is detected.
Misuses of this function with runtime-chosen types (e.g:
`mp_obj_type_t *x = ...; mp_obj_is_type(..., x);` won't be detected. MSC
is unable to detect this, so we use MP_STATIC_ASSERT_NOT_MSC().
Compiling with this commit and without the fix for d96cfd13e3 shows
that it detects the problem.
Signed-off-by: Yonatan Goldschmidt <yon.goldschmidt@gmail.com>
The empty tuple is usually a constant object, but named tuples must be
allocated to allow modification. Added explicit allocation to fix this.
Also added a regression test to verify creating an empty named tuple works.
Fixes issue #7870.
Signed-off-by: Lars Haulin <lars.haulin@gmail.com>
The GENERATOR_EXIT_IF_NEEDED macro is only used once and it's easier to
read and understand the code if this macro body is written in the code.
Then the comment just before it makes more sense.
Signed-off-by: Damien George <damien@micropython.org>
This check for code_state->ip being NULL was added in
a7c02c4538 with a commit message that "When
generator raises exception, it is automatically terminated (by setting its
code_state.ip to 0)". It was also added without any tests to test for this
particular case. (The commit did mention that CPython's test_pep380.py
triggered a bug, but upon re-running this test it did not show any need for
this NULL check of code_state->ip.)
It is true that generators that have completed (either by running to their
end or raising an exception) set "code_state.ip = 0". But there is an
explicit check at the start of mp_obj_gen_resume() to return immediately
for any attempt to resume an already-stopped generator. So the VM can
never execute a generator with NULL ip (and this was true at the time of
the above-referenced commit).
Furthermore, the other parts of the VM just before and after this piece
of code do require (or at least assume) code_state->ip is non-NULL.
Signed-off-by: Damien George <damien@micropython.org>
The optimisation that allows a single check in the VM for either a pending
exception or non-empty scheduler queue doesn't work when threading is
enabled, as one thread can clear the sched_state if it has no pending
exception, meaning the thread with the pending exception will never see it.
This removes that optimisation for threaded builds.
Also fixes a race in non-scheduler builds where get-and-clear of the
pending exception is not protected by the atomic section.
Also removes the bulk of the inlining of pending exceptions and scheduler
handling from the VM. This just costs code size and complexity at no
performance benefit.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Add .attr attribute which forwards to self->fun.
A closure is intended to wrap around a function object, so forward any
requested attributes to the wrapped function object.
Signed-off-by: Michael Bentley <mikebentley15@gmail.com>
Prior to this commit, complex("j") would return 0j, and complex("nanj")
would return nan+0j. This commit makes sure "j" is tested for after
parsing the number (nan, inf or a decimal), and also supports the case of
"j" on its own.
Signed-off-by: Damien George <damien@micropython.org>
This separates extmod source files from `py.mk`. Previously, `py.mk`
assumed that every consumer of the py/ directory also wanted to include
extmod/. However, this is not the case. For example, building mpy-cross
uses py/ but doesn't need extmod/.
This commit moves all extmod-specific items from `py.mk` to `extmod.mk` and
explicitly includes `extmod.mk` in ports that use it.
Signed-off-by: David Lechner <david@pybricks.com>
The following changes are made:
- Guard entire file with MICROPY_PY_LWIP, so it can be included in the
build while still being disabled (for consistency with other extmod
modules).
- Add modlwip.c to list of all extmod source in py/py.mk and
extmod/extmod.cmake so all ports can easily use it.
- Move generic modlwip GIT_SUBMODULES build configuration code from
ports/rp2/CMakeLists.txt to extmod/extmod.cmake, so it can be reused by
other ports.
- Remove now unnecessary inclusion of modlwip.c in EXTMOD_SRC_C in esp8266
port, and in SRC_QSTR in mimxrt port.
Signed-off-by: Damien George <damien@micropython.org>
This new logic tracks when an unconditional jump/raise occurs in the
emitted code stream (bytecode or native machine code) and suppresses all
subsequent code, until a label is assigned. This eliminates a lot of
cases of dead code, with relatively simple logic.
This commit combined with the previous one (that removed the existing
dead-code finding logic) has the following code size change:
bare-arm: -16 -0.028%
minimal x86: -60 -0.036%
unix x64: -368 -0.070%
unix nanbox: -80 -0.017%
stm32: -204 -0.052% PYBV10
cc3200: +0 +0.000%
esp8266: -232 -0.033% GENERIC
esp32: -224 -0.015% GENERIC[incl -40(data)]
mimxrt: -192 -0.054% TEENSY40
renesas-ra: -200 -0.032% RA6M2_EK
nrf: +28 +0.015% pca10040
rp2: -256 -0.050% PICO
samd: -12 -0.009% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Signed-off-by: Damien George <damien@micropython.org>
The search in these cases should include all finally handlers that are
after the current ip. If a handler starts at exactly ip then it is
considered "after" the ip. This can happen when END_FINALLY is followed
immediately by a finally handler (from a different finally).
Consider the function:
def f():
try:
return 0
finally:
print(1)
The current bytecode emitter generates the following code:
00 SETUP_FINALLY 5
02 LOAD_CONST_SMALL_INT 0
03 RETURN_VALUE
04 LOAD_CONST_NONE ****
05 LOAD_GLOBAL print
07 LOAD_CONST_SMALL_INT 1
08 CALL_FUNCTION n=1 nkw=0
10 POP_TOP
11 END_FINALLY
12 LOAD_CONST_NONE
13 RETURN_VALUE
The LOAD_CONST_NONE marked with **** is dead code because it follows a
RETURN_VALUE, and nothing jumps to this LOAD_CONST_NONE. If the emitter
could remove this this dead code it would produce:
00 SETUP_FINALLY 4
02 LOAD_CONST_SMALL_INT 0
03 RETURN_VALUE
04 LOAD_GLOBAL print
06 LOAD_CONST_SMALL_INT 1
07 CALL_FUNCTION n=1 nkw=0
09 POP_TOP
10 END_FINALLY
11 LOAD_CONST_NONE
12 RETURN_VALUE
In this case the finally block (which starts at offset 4) immediately
follows the RETURN_VALUE. When RETURN_VALUE executes ip will point to
offset 4 in the bytecode (because the dispatch of the opcode does *ip++)
and so the finally handler will only be found if a >= comparison is used.
It's a similar story for break/continue:
while True:
try:
break
finally:
print(1)
Although technically in this case the > comparison still works because the
extra byte from the UNWIND_JUMP (encoding the number of exception handlers
to unwind) doesn't have a *ip++ (just a *ip) so ip remains pointing within
the UNWIND_JUMP opcode, and not at the start of the following finally
handler. Nevertheless, the change is made to use >= for consistency with
the RETURN_VALUE change.
Signed-off-by: Damien George <damien@micropython.org>
Catch calls to legacy:
MP_REGISTER_MODULE(name, module, enable)
Emit a friendly error suggesting they be rewritten to:
MP_REGISTER_MODULE(name, module).
Signed-off-by: Phil Howard <phil@pimoroni.com>
This file is not executable so shouldn't have the shebang line. This line
can cause issues when building on Windows msvc when the PyPython variable
is set to something other than "python", because it reverts back to using
the shebang line.
The top comment is also changed to """ style which matches all other
preprocessing scripts in the py/ directory.
Signed-off-by: Damien George <damien@micropython.org>
Without this, newer versions of gcc (eg 11.2.0) used with -O2 can warn
about `q_ptr` being maybe uninitialized, because it doesn't know that there
is at least one qstr being written in to this (alloca'd) memory.
As part of this, change the type of `n` to `size_t` so the compiler knows
it's unsigned and can generate better code.
Code size change for this commit:
bare-arm: -28 -0.049%
minimal x86: -4 -0.002%
unix x64: +0 +0.000%
unix nanbox: -16 -0.003%
stm32: -24 -0.006% PYBV10
cc3200: -32 -0.017%
esp8266: +8 +0.001% GENERIC
esp32: -52 -0.003% GENERIC
nrf: -24 -0.013% pca10040
rp2: -32 -0.006% PICO
samd: -28 -0.020% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Signed-off-by: Damien George <damien@micropython.org>
This was made redundant by f2040bfc7e, which
also did not update this function for the change to qstr-opcode encoding,
so it does not work correctly anyway.
Signed-off-by: Damien George <damien@micropython.org>
Support for architecture-specific qstr linking was removed in
d4d53e9e11, where native code was changed to
access qstr values via qstr_table. The only remaining use for the special
qstr link table in persistentcode.c is to support native module written in
C, linked via mpy_ld.py. But native modules can also use the standard
module-level qstr_table (and obj_table) which was introduced in the .mpy
file reworking in f2040bfc7e.
This commit removes the remaining native qstr liking support in
persistentcode.c's load_raw_code function, and adds two new relocation
options for constants.qstr_table and constants.obj_table. mpy_ld.py is
updated to use these relocations options instead of the native qstr link
table.
Signed-off-by: Damien George <damien@micropython.org>
It's no longer needed because this macro is now processed after
preprocessing the source code via cpp (in the qstr extraction stage), which
means unused MP_REGISTER_MODULE's are filtered out by the preprocessor.
Signed-off-by: Damien George <damien@micropython.org>
This cleans up the parsing of MP_REGISTER_MODULE() and generation of
genhdr/moduledefs.h so that it uses the same process as compressed error
string messages, using the output of qstr extraction.
This makes sure all MP_REGISTER_MODULE()'s that are part of the build are
correctly picked up. Previously the extraction would miss some (eg if you
had a mod.c file in the board directory for an stm32 board).
Build speed is more or less unchanged.
Thanks to @stinos for the ports/windows/msvc/genhdr.targets changes.
Signed-off-by: Damien George <damien@micropython.org>