This removes the previous WiFi driver from drivers/cyw43 (but leaves behind
the BT driver), and makes the stm32 port (i.e. PYBD and Portenta) use the
new "lib/cyw43-driver" open-source driver already in use by the rp2 port.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
To override it a board must define MICROPY_BOARD_FATAL_ERROR to a function
that takes a string message and does not return.
Signed-off-by: Damien George <damien@micropython.org>
If MICROPY_PY_SYS_PATH_ARGV_DEFAULTS is enabled (which it is by default)
then sys.path and sys.argv will be initialised and populated with default
values. This keeps all bare-metal ports aligned.
Signed-off-by: Damien George <damien@micropython.org>
Frozen modules will be searched preferentially, but gives the user the
ability to override this behavior.
This matches the previous behavior where "" was implicitly the frozen
search path, but the frozen list was checked before the filesystem.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit is based upon prior work of @dpgeorge and @koendv.
MCU support for the STM32H7A3 and B3 families MCUs:
- STM32H7A3xx
- STM32H7A3xxQ (SMPS)
- STM32H7B3xx
- STM32H7B3xxQ (SMPS)
Support has been added for the STM32H7B3I_DK board.
Signed-off-by: Jan Staal <info@janstaal.com>
For consistency with other board-level config macros that begin with
MICROPY_HW_USB.
Also allow boards in the mimxrt, nrf and samd ports to configure these
values.
Signed-off-by: Damien George <damien@micropython.org>
* Make SDRAM test cache-aware for newer MCUs.
* Use the defined data bus width (instead of the fixed 8-bits).
* Allow optional failure on error with verbose error messages.
* Test speed is now inverted (test accepts exhaustive instead fast).
This commit adds I2S protocol support for the esp32 and stm32 ports, via
a new machine.I2S class. It builds on the stm32 work of blmorris, #1361.
Features include:
- a consistent I2S API across the esp32 and stm32 ports
- I2S configurations supported:
- master transmit and master receive
- 16-bit and 32-bit sample sizes
- mono and stereo formats
- sampling frequency
- 3 modes of operation:
- blocking
- non-blocking with callback
- uasyncio
- internal ring buffer size can be tuned
- documentation for Pyboards and esp32-based boards
- tested on the following development boards:
- Pyboard D SF2W
- Pyboard V1.1
- ESP32 with SPIRAM
- ESP32
Signed-off-by: Mike Teachman <mike.teachman@gmail.com>
This adds a call to mp_deinit() in the main function of the STM32 port.
This enables the use of MICROPY_PORT_DEINIT_FUNC on that port, as well as
cleaning up the GIL if threading is enabled.
Instead of using systick the BT subsystem is now scheduled using a soft
timer. This means it is scheduled only when it is enabled.
Signed-off-by: Damien George <damien@micropython.org>
And use the same boardctrl.h header for both the application and mboot so
these constants are consistent.
Signed-off-by: Damien George <damien@micropython.org>
This commit simplifies the customisation of the main MicroPython execution
loop (4 macros are reduced to 2), and allows a board to have full control
over the execution (or not) of boot.py and main.py.
For boards that use the default start-up code, there is no functional
change in this commit.
Signed-off-by: Damien George <damien@micropython.org>
state.reset_mode is updated by `MICROPY_BOARD_BEFORE_SOFT_RESET_LOOP` but
not passed to `init_flash_fs`, and so factory reset is not executed on
boards that do not have a bootloader. This bug was introduced by
4c3976bbcaFixes#6903.
It's enabled by default to retain the existing behaviour. A board can
disable this option if it manages mounting the filesystem itself, for
example in frozen code.
Signed-off-by: Damien George <damien@micropython.org>
The superblock for littlefs is in block 0 and 1, but block 0 may be erased
or partially written, so block 1 must be checked if block 0 does not have a
valid littlefs superblock in it.
Prior to this commit, if block 0 did not contain a valid littlefs
superblock (but block 1 did) then the auto-detection would fail, mounting a
FAT filesystem would also fail, and the system would reformat the flash,
even though it may have contained a valid littlefs filesystem. This is now
fixed.
Signed-off-by: Damien George <damien@micropython.org>
When littlefs is enabled extended reading must be supported, and using this
function to read the first block for auto-detection is more efficient (a
smaller read) and does not require a cached SPI-flash read.
Signed-off-by: Damien George <damien@micropython.org>
This changes stm32 from using PENDSV to run NimBLE to use the MicroPython
scheduler instead. This allows Python BLE callbacks to be invoked directly
(and therefore synchronously) rather than via the ringbuffer.
The NimBLE UART HCI and event processing now happens in a scheduled task
every 128ms. When RX IRQ idle events arrive, it will also schedule this
task to improve latency.
There is a similar change for the unix port where the background thread now
queues the scheduled task.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Running the update inside the soft-reset loop will mean that (on boards
like PYBD that use a bootloader) the same reset mode is used each
reset loop, eg factory reset occurs each time.
Signed-off-by: Damien George <damien@micropython.org>
This makes a cleaner separation between the: driver, HCI UART and BT stack.
Also updated the naming to be more consistent (mp_bluetooth_hci_*).
Work done in collaboration with Jim Mussared aka @jimmo.
This commit refactors and generalises the boot-mount routine on stm32 so
that it can mount filesystems of arbitrary type. That is, it no longer
assumes that the filesystem is FAT. It does this by using mp_vfs_mount()
which does auto-detection of the filesystem type.
This commit adds an implementation of a "software timer" with a 1ms
resolution, using SysTick. It allows unlimited number of concurrent
timers (limited only by memory needed for each timer entry). They can be
one-shot or periodic, and associated with a Python callback.
There is a very small overhead added to the SysTick IRQ, which could be
further optimised in the future, eg by patching SysTick_Handler code
dynamically.