All callers of mp_obj_int_formatted() are expected to pass in a valid int
object, and they do:
- mp_obj_int_print() should always pass through an int object because it is
the print special method for int instances.
- mp_print_mp_int() checks that the argument is an int, and if not converts
it to a small int.
This patch saves around 20-50 bytes of code space.
Prior to this patch, some architectures (eg unix x86) could render floats
with "negative" digits, like ")". For example, '%.23e' % 1e-80 would come
out as "1.0000000000000000/)/(,*0e-80". This patch fixes the known cases.
Prior to this patch, some architectures (eg unix x86) could render floats
with a ":" character in them, eg 1e+39 would come out as ":e+38" (":" is
just after "9" in ASCII so this is like 10e+38). This patch fixes some of
these cases.
Prior to this patch the %f formatting of some FP values could be off by up
to 1, eg '%.0f' % 123 would return "122" (unix x64). Depending on the FP
precision (single vs double) certain numbers would format correctly, but
others wolud not. This patch should fix all cases of rounding for %f.
There's no need to have MP_OBJ_NULL a special case, the code can re-use
the MP_OBJ_STOP_ITERATION value to signal the special case and the VM can
detect this with only one check (for MP_OBJ_STOP_ITERATION).
This patch concerns the handling of an NLR-raised StopIteration, raised
during a call to mp_resume() which is handling the yield from opcode.
Previously, commit 6738c1dded introduced code
to handle this case, along with a test. It seems that it was lucky that
the test worked because the code did not correctly handle the stack pointer
(sp).
Furthermore, commit 79d996a57b improved the
way mp_resume() propagated certain exceptions: it changed raising an NLR
value to returning MP_VM_RETURN_EXCEPTION. This change meant that the
test introduced in gen_yield_from_ducktype.py was no longer hitting the
code introduced in 6738c1dded.
The patch here does two things:
1. Fixes the handling of sp in the VM for the case that yield from is
interrupted by a StopIteration raised via NLR.
2. Introduces a new test to check this handling of sp and re-covers the
code in the VM.
This path for src->deg==NULL is never used because mpz_clone() is always
called with an argument that has a non-zero integer value, and hence has
some digits allocated to it (mpz_clone() is a static function private to
mpz.c all callers of this function first check if the integer value is zero
and if so take a special-case path, bypassing the call to mpz_clone()).
There is some unused and commented-out functions that may actually pass a
zero-valued mpz to mpz_clone(), so some TODOs are added to these function
in case they are needed in the future.
All callers of the asm entry function guarantee that num_locals>=0, so no
need to add an explicit check for it. Use an assertion instead.
Also, the signature of asm_x86_entry is changed to match the other asm
entry functions.
If a port only needs the core files then it can now use the $(PY_CORE_O)
variable instead of $(PY_O). $(PY_EXTMOD_O) contains the list of extmod
files (including some files from lib/). $(PY_O) retains its original
definition as the list of all object file (including those for frozen code)
and is a convenience variable for ports that want everything.
Saves a few bytes of code space, and is more efficient because with
MICROPY_GC_CONSERVATIVE_CLEAR enabled by default all memory is already
cleared when allocated.
Otherwise passing -1 as maxlen will lead to a zero allocation and
subsequent unbound buffer overflow in deque.append() because i_put is
allowed to grow without bound.
So far, implements just append() and popleft() methods, required for
a normal queue. Constructor doesn't accept an arbitarry sequence to
initialize from (am empty deque is always created), so an empty tuple
must be passed as such. Only fixed-size deques are supported, so 2nd
argument (size) is required.
There's also an extension to CPython - if True is passed as 3rd argument,
append(), instead of silently overwriting the oldest item on queue
overflow, will throw IndexError. This behavior is desired in many
cases, where queues should store information reliably, instead of
silently losing some items.
The micropython.stack_use() function is useful to query the current C stack
usage, and it's inclusion in the micropython module doesn't need to be tied
to the inclusion of mem_info()/qstr_info() because it doesn't rely on any
of the code from these functions. So this patch introduces the config
option MICROPY_PY_MICROPYTHON_STACK_USE which can be used to independently
control the inclusion of stack_use(). By default it is enabled if
MICROPY_PY_MICROPYTHON_MEM_INFO is enabled (thus not changing any of the
existing ports).
The new option is MICROPY_ENABLE_EXTERNAL_IMPORT and is enabled by default
so that the default behaviour is the same as before. With it disabled
import is only supported for built-in modules, not for external files nor
frozen modules. This allows to support targets that have no filesystem of
any kind and that only have access to pre-supplied built-in modules
implemented natively.
Prior to this patch uPy (on a 32-bit arch) would have severe issues when
calling bytes(-1): such a call would call vstr_init_len(vstr, -1) which
would then +1 on the len and call vstr_init(vstr, 0), which would then
round this up and allocate a small amount of memory for the vstr. The
bytes constructor would then attempt to zero out all this memory, thinking
it had allocated 2^32-1 bytes.
This patch changes the way REPL autocomplete finds matches. It now probes
the target object for all qstrs via mp_load_method_maybe to look for a
match with the given input string. Similar to how the builtin dir()
function works, this new algorithm now find all methods and instances of
user-defined classes including attributes of their parent classes. This
helps a lot at the REPL prompt for user-discovery and to autocomplete names
even for classes that are derived.
The downside is that this new algorithm is slower than the previous one,
and in particular will be slower the more qstrs there are in the system.
But because REPL autocomplete is primarily used in an interactive way it is
not that important to make it fast, as long as it is "fast enough" compared
to human reaction.
On a slow microcontroller (CPU running at 16MHz) the autocomplete time for
a list of 35 names in the outer namespace (pressing tab at a bare prompt)
takes about 160ms with this algorithm, compared to about 40ms for the
previous implementation (this time includes the actual printing of the
names as well). This time of 160ms is very reasonable especially given the
new functionality of listing all the names.
This patch also decreases code size by:
bare-arm: +0
minimal x86: -128
unix x64: -128
unix nanbox: -224
stm32: -88
cc3200: -80
esp8266: -92
esp32: -84
This patch improves the builtin dir() function by probing the target object
with all possible qstrs via mp_load_method_maybe. This is very simple (in
terms of implementation), doesn't require recursion, and allows to list all
methods of user-defined classes (without duplicates) even if they have
multiple inheritance with a common parent. The downside is that it can be
slow because it has to iterate through all the qstrs in the system, but
the "dir()" function is anyway mostly used for testing frameworks and user
introspection of types, so speed is not considered a priority.
In addition to providing a more complete implementation of dir(), this
patch is simpler than the previous implementation and saves some code
space:
bare-arm: -80
minimal x86: -80
unix x64: -56
unix nanbox: -48
stm32: -80
cc3200: -80
esp8266: -104
esp32: -64
This macro is written out explicitly in the two locations that it is used
and then the code is optimised, opening possibilities for further
optimisations and reducing code size:
unix: -48
minimal CROSS=1: -32
stm32: -32
Using the message "maximum recursion depth exceeded" for when the pystack
runs out of memory can be misleading because the pystack can run out for
reasons other than deep recursion (although in most cases pystack
exhaustion is probably indirectly related to deep recursion). And it's
important to give the user more precise feedback as to the reason for the
error: if they know precisely that the pystack was exhausted then they have
a chance to increase the amount of memory available to the pystack (as
opposed to not knowing if it was the C stack or pystack that ran out).
Also, C stack exhaustion is more serious than pystack exhaustion because it
could have been that the C stack overflowed and overwrote/corrupted some
data and so the system must be restarted. The pystack can never corrupt
data in this way so pystack exhaustion does not require a system restart.
Knowing the difference between these two cases is therefore important.
The actual exception type for pystack exhaustion remains as RuntimeError so
that programatically it behaves the same as a C stack exhaustion.
By adding __builtin_unreachable() at the end of nlr_push, we're
essentially telling the compiler that this function will never return.
When GCC LTO is in use, this means that any time nlr_push() is called
(which is often), the compiler thinks this function will never return
and thus eliminates all code following the call.
Note: I've added a 'return 0' for older GCC versions like 4.6 which
complain about not returning anything (which doesn't make sense in a
naked function). Newer GCC versions (tested 4.8, 5.4 and some others)
don't complain about this.
This constant exception instance was once used by m_malloc_fail() to raise
a MemoryError without allocating memory, but it was made obsolete long ago
by 3556e45711. The functionality is now
replaced by the use of mp_emergency_exception_obj which lives in the global
uPy state, and which can handle any exception type, not just MemoryError.
This feature is not often used so is guarded by the config option
MICROPY_PY_BUILTINS_RANGE_BINOP which is disabled by default. With this
option disabled MicroPython will always return false when comparing two
range objects for equality (unless they are exactly the same object
instance). This does not match CPython so if (in)equality between range
objects is needed then this option should be enabled.
Enabling this option costs between 100 and 200 bytes of code space
depending on the machine architecture.
This patch provides inline versions of the utf8 helper functions for the
case when unicode is disabled (MICROPY_PY_BUILTINS_STR_UNICODE set to 0).
This saves code size.
The unichar_charlen function is also renamed to utf8_charlen to match the
other utf8 helper functions, and the signature of this function is adjusted
for consistency (const char* -> const byte*, mp_uint_t -> size_t).
Prior to this patch, a float literal that was close to subnormal would
have a loss of precision when parsed. The worst case was something like
float('10000000000000000000e-326') which returned 0.0.
This patch simplifies how sentinel values are stored on the stack when
doing an unwind return or jump. Instead of storing two values on the stack
for an unwind jump it now stores only one: a negative small integer means
unwind-return and a non-negative small integer means unwind-jump with the
value being the number of exceptions to unwind. The savings in code size
are:
bare-arm: -56
minimal x86: -68
unix x64: -80
unix nanbox: -4
stm32: -56
cc3200: -64
esp8266: -76
esp32: -156
The array should be of type unsigned byte because that is the type of the
values being stored. And changing to uint8_t helps to prevent warnings
from some static analysers.
Note that the check for elem!=NULL is removed for the
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND case because mp_map_lookup will always
return non-NULL for such a case.
This patch combines the compiler optimisation code for double and triple
tuple-to-tuple assignment, taking it from two separate if-blocks to one
combined if-block. This can be done because the code for both of these
optimisations has a lot in common. Combining them together reduces code
size for ports that have the triple-tuple optimisation enabled (and doesn't
change code size for ports that have it disabled).
The number of registers used should be 10, not 12, to match the assembly
code in nlrx64.c. With this change the 64bit mingw builds don't need to
use the setjmp implementation, and this fixes miscellaneous crashes and
assertion failures as reported in #1751 for instance.
To avoid mistakes in the future where something gcc-related for Windows
only gets fixed for one particular compiler/environment combination,
make use of a MICROPY_NLR_OS_WINDOWS macro.
To make sure everything nlr-related is now ok when built with gcc this
has been verified with:
- unix port built with gcc on Cygwin (i686-pc-cygwin-gcc and
x86_64-pc-cygwin-gcc, version 6.4.0)
- windows port built with mingw-w64's gcc from Cygwin
(i686-w64-mingw32-gcc and x86_64-w64-mingw32-gcc, version 6.4.0)
and MSYS2 (like the ones on Cygwin but version 7.2.0)