These can be used to insert arbitrary checks, polling, etc into the VM.
They are left general because the VM is a highly tuned loop and it should
be up to a given port how that port wants to modify the VM internals.
One common use would be to insert a polling check, but only done after
a certain number of opcodes were executed, so as not to slow down the VM
too much. For example:
#define MICROPY_VM_HOOK_COUNT (30)
#define MICROPY_VM_HOOK_INIT static uint vm_hook_divisor = MICROPY_VM_HOOK_COUNT
#define MICROPY_VM_HOOK_POLL if (--vm_hook_divisor == 0) { \
vm_hook_divisor = MICROPY_VM_HOOK_COUNT;
extern void vm_hook_function(void);
vm_hook_function();
}
#define MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_POLL
#define MICROPY_VM_HOOK_RETURN MICROPY_VM_HOOK_POLL
If None was returned for such requests (which likely means that user simply
didn't handle them), it means successful init and default sector size of 512
bytes respectively. This makes only BP_IOCTL_SEC_COUNT a mandatory request,
and thus re-establishes parity with old interface, where only .count() is
mandatory().
This implements OO interface based on existing fsusermount code and with
minimal changes to it, to serve as a proof of concept of OO interface.
Examle of usage:
bdev = RAMFS(48)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev, "/ramdisk")
f = vfs.open("foo", "w")
f.write("hello!")
f.close()
This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
You can now create (singleton) objects representing the flash and SD
card, using:
flash = pyb.Flash()
sdcard = pyb.SDCard()
These objects provide the block protocol.
This enables MICROPY_HW_HAS_FLASH which got missed.
The HW has UART2 on the 401 connected to the STLINK procesor
which exposes it as USB serial. This connects that up so that
you can get a REPL using the USB serial.
If MICROPY_FATFS_MAX_SS is defined to power of 2 value between 1024 and
4096, support for dynamic sector size in FatFs will be enabled. Note
that FatFs reserves static buffer of MICROPY_FATFS_MAX_SS size for each
filesystem in use, so that value should be set sparingly.
Initial patch provided by @pfalcon.
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)
The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.
The old protocol is still supported, and used if the device doesn't have
the ioctl method.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.