Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
The default protection for the BLE ringbuf is to use
MICROPY_BEGIN_ATOMIC_SECTION, which disables all interrupts. On stm32 it
only needs to disable the lowest priority IRQ, pendsv, because that's the
IRQ level at which the BLE stack is driven.
qstrs in this file are always included in all builds, even if not used
anywhere. So remove those that are never needed, and make USB names
conditional on having USB enabled.
And return -MP_EIO if calling storage_read_block/storage_write_block fails.
This lines up with the return type and value (negative for error) of the
calls to MICROPY_HW_BDEV_READBLOCKS (and WRITEBLOCKS, and BDEV2 versions).
The pyb.Flash() class can now be used to construct objects which reference
sections of the flash storage, starting at a certain offset and going for a
certain length. Such objects also support the extended block protocol.
The signature for the constructor is: pyb.Flash(start=-1, len=-1).
This commit refactors and generalises the boot-mount routine on stm32 so
that it can mount filesystems of arbitrary type. That is, it no longer
assumes that the filesystem is FAT. It does this by using mp_vfs_mount()
which does auto-detection of the filesystem type.
Using mp_hal_delay_ms allows the scheduler to run, which might result in
another transmit operation happening, which would bypass the sleep (and
fail). Use mp_hal_delay_us instead.
The compile-time configuration value MICROPY_HW_RTC_USER_MEM_MAX can now be
used to define the amount of memory set aside for RTC.memory(). If this
value is configured to zero then the RTC.memory functionality is not
included in the build.
The IDF heap is more fragmented with IDF 4 and mbedtls cannot allocate
enough RAM with 16+16kiB for both in and out buffers, so reduce output
buffer size.
Fixes issue #5303.
This commit removes the Makefile-level MICROPY_FATFS config and moves the
MICROPY_VFS_FAT config to the Makefile level to replace it. It also moves
the include of the oofatfs source files in the build from each port to a
central place in extmod/extmod.mk.
For a port to enabled VFS FAT support it should now set MICROPY_VFS_FAT=1
at the level of the Makefile. This will include the relevant oofatfs files
in the build and set MICROPY_VFS_FAT=1 at the C (preprocessor) level.
This commit adds support for littlefs (v2) on all esp32 boards.
The original FAT filesystem still works and any board with a preexisting
FAT filesystem will still work as normal. It's possible to switch to
littlefs by reformatting the block device using:
import uos, flashbdev
uos.VfsLfs2.mkfs(flashbdev.bdev)
Then when the board reboots (soft or hard) the new littlefs filesystem will
be mounted. It's possible to switch back to a FAT filesystem by formatting
with uos.VfsFat.mkfs(flashbdev.bdev).
This commit adds an implementation of machine.Timer backed by the soft
timer mechanism. It allows an arbitrary number of timers with 1ms
resolution, with an associated Python callback. The Python-level API
matches existing ports that have a soft timer, and is used as:
from machine import Timer
t = Timer(freq=10, callback=lambda t:print(t))
...
t = Timer(mode=Timer.ONE_SHOT, period=2000, callback=lambda t:print(t))
...
t.deinit()
This commit adds an implementation of a "software timer" with a 1ms
resolution, using SysTick. It allows unlimited number of concurrent
timers (limited only by memory needed for each timer entry). They can be
one-shot or periodic, and associated with a Python callback.
There is a very small overhead added to the SysTick IRQ, which could be
further optimised in the future, eg by patching SysTick_Handler code
dynamically.
The MP_STATE_THREAD(stack_top) is always available so use it instead of
creating a separate variable. This also allows gc_collect() to be used as
an independent function, without real_main() being called.