That can be caused e.g. by an exception. This feature is implemented in
some way already for the stm32, renesas-ra, mimxrt and samd ports. This
commit adds it for the rp2, esp8266, esp32 and nrf ports. No change for
the cc3200 and teensy ports.
Signed-off-by: robert-hh <robert@hammelrath.com>
For consistency with other Python-level modules.
Also add the corresponding missing preprocessor guard to esp32/modespnow.c,
so that this port compiles if MICROPY_PY_ESPNOW and MICROPY_PY_NETWORK_WLAN
are set to 0.
Fixes#12622.
Signed-off-by: Glenn Moloney <glenn.moloney@gmail.com>
CONFIG_USB_OTG_SUPPORTED is automatically set by the ESP-IDF when the chip
supports USB-OTG, which is the case for the ESP32-S2 and ESP32-S3.
When trying to use the JTAG console with these chips, it would not work
because our USB implementation will take over control over the USB port,
breaking the JTAG console in the process.
Thus, when the board is configured to use the JTAG console, we should not
enable our USB console support.
Additionally, this change also frees up UART0 when an USB-based console is
configured, since there's no reason to prevent (re)configuration of UART0
for other uses in that case.
Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
Via MICROPY_GC_SPLIT_HEAP_AUTO feature flag added in previous commit.
Tested on ESP32 GENERIC_SPIRAM and GENERIC_S3 configurations, with some
worst-case allocation patterns and the standard test suite.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Since commit beeb74 we already check in modussl_mbedtls whether this
function is provided by the ESP-IDF before calling it, thus we no longer
need to define it here in order to compile.
Removing it so that if CONFIG_MBEDTLS_DEBUG is defined we do not cause any
'multiple definition' compile errors.
Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
This commit updates the esp32 port to work exclusively with ESP-IDF v5.
IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also
cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3,
and C3).
Support for IDF v4 is dropped because it's a lot of effort to maintain both
versions at the same time.
The following components have been verified to work on the various SoCs:
ESP32 ESP32-S2 ESP32-S3 ESP32-C3
build pass pass pass pass
SPIRAM pass pass pass N/A
REPL (UART) pass pass pass pass
REPL (USB) N/A pass pass N/A
filesystem pass pass pass pass
GPIO pass pass pass pass
SPI pass pass pass pass
I2C pass pass pass pass
PWM pass pass pass pass
ADC pass pass pass pass
WiFi STA pass pass pass pass
WiFi AP pass pass pass pass
BLE pass N/A pass pass
ETH pass -- -- --
PPP pass pass pass --
sockets pass pass pass pass
SSL pass ENOMEM pass pass
RMT pass pass pass pass
NeoPixel pass pass pass pass
I2S pass pass pass N/A
ESPNow pass pass pass pass
ULP-FSM pass pass pass N/A
SDCard pass N/A N/A pass
WDT pass pass pass pass
Signed-off-by: Damien George <damien@micropython.org>
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
ESP-NOW is a proprietary wireless communication protocol which supports
connectionless communication between ESP32 and ESP8266 devices, using
vendor specific WiFi frames. This commit adds support for this protocol
through a new `espnow` module.
This commit builds on original work done by @nickzoic, @shawwwn and with
contributions from @zoland. Features include:
- Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO.
- Signal strength (RSSI) monitoring.
- Core support in `_espnow` C module, extended by `espnow.py` module.
- Asyncio support via `aioespnow.py` module (separate to this commit).
- Docs provided at `docs/library/espnow.rst`.
Methods available in espnow.ESPNow class are:
- active(True/False)
- config(): set rx buffer size, read timeout and tx rate
- recv()/irecv()/recvinto() to read incoming messages from peers
- send() to send messages to peer devices
- any() to test if a message is ready to read
- irq() to set callback for received messages
- stats() returns transfer stats:
(tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts)
- add_peer(mac, ...) registers a peer before sending messages
- get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt)
- mod_peer(mac, ...) changes peer info parameters
- get_peers() returns all peer info tuples
- peers_table supports RSSI signal monitoring for received messages:
{peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...}
ESP8266 is a pared down version of the ESP32 ESPNow support due to code
size restrictions and differences in the low-level API. See docs for
details.
Also included is a test suite in tests/multi_espnow. This tests basic
espnow data transfer, multiple transfers, various message sizes, encrypted
messages (pmk and lmk), and asyncio support.
Initial work is from https://github.com/micropython/micropython/pull/4115.
Initial import of code is from:
https://github.com/nickzoic/micropython/tree/espnow-4115.
Helps prevent the filesystem from getting formatted by mistake, among other
things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).
Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state. If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application. The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it. But defining
"long enough" is impossible for all the different boards and their possible
behaviour. The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C. That code then effectively
acts like normal C start-up code, which also cannot be interrupted.
Note: on the stm32 port this was never seen as an issue because all
start-up code is in C. But now other ports start to put more things in
_boot.py and so this problem crops up.
Signed-off-by: David Grayson <davidegrayson@gmail.com>
usocket_events_deinit will only be available if MICROPY_PY_USOCKET_EVENTS
is enabled (which is only enabled when webrepl is enabled).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Some S2/S3 modules don't use the native USB interface but instead have an
external USB-UART. To make the GENERIC_S3/S3 firmware work on these boards
the UART REPL is enabled in addition to the native USB CDC REPL.
Fixes issues #8418 and #8524.
Signed-off-by: Damien George <damien@micropython.org>
This change allows the same heap allocation rules to be used when using
malloc regardless if the board has SPRAM or normal RAM.
Integrating with the esp32-camera for example requires that ESP32 SPRAM be
allocatable using the esp-idf capabilities aware allocation functions. In
the case of esp32-camera it's for the framebuffer.
Detect when CONFIG_SPIRAM_USE_MALLOC is in use and use the standard
automatic configuration of leaving 1/2 of the SPRAM available to other
FreeRTOS tasks.
If MICROPY_PY_SYS_PATH_ARGV_DEFAULTS is enabled (which it is by default)
then sys.path and sys.argv will be initialised and populated with default
values. This keeps all bare-metal ports aligned.
Signed-off-by: Damien George <damien@micropython.org>
Frozen modules will be searched preferentially, but gives the user the
ability to override this behavior.
This matches the previous behavior where "" was implicitly the frozen
search path, but the frozen list was checked before the filesystem.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The methods duty_u16() and duty_ns() are implemented to match the existing
docs. The duty will remain the same when the frequency is changed.
Standard ESP32 as well as S2, S3 and C3 are supported.
Thanks to @kdschlosser for the fix for rounding in resolution calculation.
Documentation is updated and examples expanded for esp32, including the
quickref and tutorial. Additional notes are added to the machine.PWM docs
regarding limitations of hardware PWM.
To do this the board must define MICROPY_BOARD_STARTUP, set
MICROPY_SOURCE_BOARD then define the new start-up code.
For example, in mpconfigboard.h:
#define MICROPY_BOARD_STARTUP board_startup
void board_startup(void);
in mpconfigboard.cmake:
set(MICROPY_SOURCE_BOARD
${MICROPY_BOARD_DIR}/board.c
)
and in a new board.c file in the board directory:
#include "py/mpconfig.h"
void board_startup(void) {
boardctrl_startup();
// extra custom startup
}
This follows stm32's boardctrl facilities.
Signed-off-by: Damien George <damien@micropython.org>
Add a new board type for ESP32-C3 revision 3 and up that implement the USB
serial/JTAG port on pin 18 and 19. This variant uses the USB serial for
programming and console, leaving the UART free.
- Pins 18 and 19 are correctly reserved for this variant. Also pins 14-17
are reserved for flash for any ESP32-C3 so they can't be reconfigured
anymore to crash the system.
- Added usb_serial_jtag.c and .h to implement this interface.
- Interface was tested to work correctly together with webrepl.
- Interface was tested to work correctly when sending and receiving
large files with ampy.
- Disconnecting terminal or USB will not hang the system when it's
trying to print.
This commit adds I2S protocol support for the esp32 and stm32 ports, via
a new machine.I2S class. It builds on the stm32 work of blmorris, #1361.
Features include:
- a consistent I2S API across the esp32 and stm32 ports
- I2S configurations supported:
- master transmit and master receive
- 16-bit and 32-bit sample sizes
- mono and stereo formats
- sampling frequency
- 3 modes of operation:
- blocking
- non-blocking with callback
- uasyncio
- internal ring buffer size can be tuned
- documentation for Pyboards and esp32-based boards
- tested on the following development boards:
- Pyboard D SF2W
- Pyboard V1.1
- ESP32 with SPIRAM
- ESP32
Signed-off-by: Mike Teachman <mike.teachman@gmail.com>
Improvements made:
- PSRAM support for S2
- partition definition for 16MiB flash
- correct ADC and DAC pins
- correct GPIO and IRQ pins
- S3 components in CMakeLists
Based on original commit made by Seon Rozenblum aka @UnexpectedMaker.
Signed-off-by: Damien George <damien@micropython.org>
This commit fixes two issues on the esp32:
- it enables machine.soft_reset() to be called in main.py;
- it enables machine.reset_cause() to correctly identify a soft reset.
The former is useful in that it enables soft resets in applications that
are started at boot time. The support is patterned after the stm32 port.
With this commit the code should work correctly regardless of the size of
StackType_t (it's actually 1 byte in size for the esp32's custom FreeRTOS).
Fixes issue #6072.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
This commit adds support for a second supported hash (currently set to the
4.0-beta1 tag). When this hash is detected, the relevant changes are
applied.
This allows to start using v4 features (e.g. BLE with Nimble), and also
start doing testing, while still supporting the original, stable, v3.3 IDF.
Note: this feature is experimental, not well tested, and network.LAN and
network.PPP are currently unsupported.
On this port the GIL is enabled and everything works under the assumption
of the GIL, ie that a given task has exclusive access to the uPy state, and
any ISRs interrupt the current task and therefore the ISR inherits
exclusive access to the uPy state for the duration of its execution.
If the MicroPython tasks are not pinned to a specific core then an ISR may
be executed on a different core to the task, making it possible for the
main task and an ISR to execute in parallel, breaking the assumption of the
GIL.
The easiest and safest fix for this is to pin all MicroPython related code
to the same CPU core, as done by this patch. Then any ISR that accesses
MicroPython state must be registered from a MicroPython task, to ensure it
is invoked on the same core.
See issue #4895.
The stm32 and nrf ports already had the behaviour that they would first
check if the script exists before executing it, and this patch makes all
other ports work the same way. This helps when developing apps because
it's hard to tell (when unconditionally trying to execute the scripts) if
the resulting OSError at boot up comes from missing boot.py or main.py, or
from some other error. And it's not really an error if these scripts don't
exist.
Replaces "PYB: soft reboot" with "MPY: soft reboot", etc.
Having a consistent prefix across ports reduces the difference between
ports, which is a general goal. And this change won't break pyboard.py
because that tool only looks for "soft reboot".
This is necessary for two reasons: 1) FreeRTOS still needs the TCB data
structure even after vPortCleanUpTCB has been called, so this latter hook
function cannot free the TCB, and there is no where else to safely delete
it (this behaviour has changed recently in the ESP IDF); 2) when using
external SPI RAM the uPy heap is in this external memory but the task stack
must be allocated from internal SRAM.
Fixes issue #3904.
Prior to this patch there was a large latency for executing scheduled
callbacks when when Python code is sleeping: at the heart of the
implementation of sleep_ms() is a call to vTaskDelay(1), which always
sleeps for one 100Hz tick, before performing another call to
MICROPY_EVENT_POLL_HOOK.
This patch fixes this issue by using FreeRTOS Task Notifications to signal
the main thread that a new callback is pending.