If a non-string buffer was passed to execfile, then it would be passed
as a non-null-terminated char* to mp_lexer_new_from_file.
This changes mp_lexer_new_from_file to take a qstr instead (as in almost
all cases a qstr will be created from this input anyway to set the
`__file__` attribute on the module).
This now makes execfile require a string (not generic buffer) argument,
which is probably a good fix to make anyway.
Fixes issue #12522.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This was previously hard-coded to "Micropy" / "Mass Storage" / "1.0".
Now allow it to be overridden by a board.
Also change "Micropy" to "MicroPy" and "1.0" to "1.00" to match stm32.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The DHCP server broadcasts messages. They are being sent via the default
netif which might be completely the wrong network. We want to send
messages to the netif we got the original message from.
Original author: [Peter Harper](https://github.com/peterharperuk)
Source: https://github.com/raspberrypi/pico-examples/pull/392
Signed-off-by: Samveen <samveen@samveen.in>
There are enough places that implement __exit__ by forwarding directly to
mp_stream_close that this saves code size.
For the cases where __exit__ is a no-op, additionally make their
MP_STREAM_CLOSE ioctl handled as a no-op.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
On targets that provide a reference TinyUSB implementation, like ESP32,
the SDK already defines and implements standard callback functions such
as tud_cdc_line_state_cb(). This causes a symbol clash when enabling
shared implementations like the MicroPython 1200 touch functionality.
To avoid this symbol clash, add an optional macro to allow ports to
use a different function name in the shared implementation.
Signed-off-by: Luca Burelli <l.burelli@arduino.cc>
Previously sys.path could be modified by append/pop or slice assignment.
This allows `sys.path = [...]`, which can be simpler in many cases, but
also improves CPython compatibility.
It also allows sys.path to be set to a tuple which means that you can
clear sys.path (e.g. temporarily) with no allocations.
This also makes sys.path (and sys.argv for consistency) able to be disabled
via mpconfig. The unix port (and upytesthelper) require them, so they
explicitly verify that they're enabled.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This fixes:
- type-comparison (E721): do not compare types, use isinstance().
- string-dot-format-missing-arguments (F524): .format call is missing
argument(s) for placeholder(s): {message}.
- f-string-missing-placeholders (F541).
- is-literal (F632): Use != to compare constant literals.
The last one is fixed by just comparing for truthfulness of `state`.
This reverts commit 0613d3e356.
The value of CFG_TUD_CDC_EP_BUFSIZE should match the endpoint size,
otherwise data may stay in the lower layers of the USB stack (and not
passed up to the higher layers) until a total of CFG_TUD_CDC_EP_BUFSIZE
bytes have been received, which may not happen for a long time.
Fixes issue #11253.
Signed-off-by: Damien George <damien@micropython.org>
Helps prevent the filesystem from getting formatted by mistake, among other
things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).
Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state. If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application. The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it. But defining
"long enough" is impossible for all the different boards and their possible
behaviour. The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C. That code then effectively
acts like normal C start-up code, which also cannot be interrupted.
Note: on the stm32 port this was never seen as an issue because all
start-up code is in C. But now other ports start to put more things in
_boot.py and so this problem crops up.
Signed-off-by: David Grayson <davidegrayson@gmail.com>
Previously, setting MICROPY_HW_ENABLE_USBDEV to 0 caused build errors. The
change affects the nrf and samd ports as well, so MICROPY_HW_ENABLE_USBDEV
had to be explicitly enabled there.
The configuration options MICROPY_HW_ENABLE_USBDEV and
MICROPY_HW_ENABLE_UART_REPL are independent, and can be enabled or disabled
by a board.
Signed-off-by: Damien George <damien@micropython.org>
The C-level printf is usually used for internal debugging prints, and a
port/board may want to redirect this somewhere other than stdout.
Signed-off-by: Damien George <damien@micropython.org>
The previous computation incorrectly assumed that the uint32_t ticks
counter MICROPY_SOFT_TIMER_TICKS_MS was in the range [0,0x80000000) where
its actually [0,0xffffffff]. This means the diff calculation can be
simplified compared to the original implementation copied from
utime_mphal.c, which has to deal with a ticks range constrained by the
small int range.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Before, both uwTick and mp_hal_ticks_ms() were used as clock source. That
assumes, that these two are synchronous and start with the same value,
which may be not the case for all ports. If the lag between uwTick and
mp_hal_ticks_ms() is larger than the timer interval, the timer would either
rush up until the times are synchronous, or not start until uwTick wraps
over.
As suggested by @dpgeorge, MICROPY_SOFT_TIMER_TICKS_MS is now used in
softtimer.c, which has to be defined in a port's mpconfigport.h with
the variable that holds the SysTick counter.
Note that it's not possible to switch everything in softtimer.c to use
mp_hal_ticks_ms() because the logic in SysTick_Handler that schedules
soft_timer_handler() uses (eg on mimxrt) the uwTick variable directly
(named systick_ms there), and mp_hal_ticks_ms() uses a different source
timer. Thus it is made fully configurable.
This drops the `.cpu` directive from the ARM gchelper_*.s files. Having
this directive breaks the linker when targeting older CPUs (e.g. `-mthumb
-mthumb-interwork` for `-mcpu=arm7tdmi`). The actual target CPU should be
determined by the compiler options.
The exact CPU doesn't actually matter, but rather the supported assembly
instruction set. So the files are renamed to *_thumb1.s and *thumb2.s to
indicate the instruction set support instead of the CPU support.
Signed-off-by: David Lechner <david@pybricks.com>
App the mp_ prefix to usbd_ symbols and files which are defined here and
not in TinyUSB.
rp2 only for now. This includes some groundwork for dynamic USB devices
(defined in Python).
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The goal here is to remove a slot (making way to turn make_new into a slot)
as well as reduce code size by the ~40 references to mp_identity_getiter
and mp_stream_unbuffered_iter.
This introduces two new type flags:
- MP_TYPE_FLAG_ITER_IS_ITERNEXT: This means that the "iter" slot in the
type is "iternext", and should use the identity getiter.
- MP_TYPE_FLAG_ITER_IS_CUSTOM: This means that the "iter" slot is a pointer
to a mp_getiter_iternext_custom_t instance, which then defines both
getiter and iternext.
And a third flag that is the OR of both, MP_TYPE_FLAG_ITER_IS_STREAM: This
means that the type should use the identity getiter, and
mp_stream_unbuffered_iter as iternext.
Finally, MP_TYPE_FLAG_ITER_IS_GETITER is defined as a no-op flag to give
the default case where "iter" is "getiter".
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
stdio_obj_print is private to this file so can be made static. The __del__
method does nothing so can be removed (it's only called by the GC if it
exists, so if it doesn't exist it won't be called). And FileIO doesn't
support a constructor in MicroPython at this stage.
Signed-off-by: Damien George <damien@micropython.org>
This uses MP_REGISTER_ROOT_POINTER() to register repl_line
instead of using a conditional inside of mp_state_vm_t.
Signed-off-by: David Lechner <david@pybricks.com>
This uses MP_REGISTER_ROOT_POINTER() to register the readline_history root
pointer array used by shared/readline.c and removes the registration from
all mpconfigport.h files.
This also required adding a new MICROPY_READLINE_HISTORY_SIZE config option
since not all ports used the same sized array.
Signed-off-by: David Lechner <david@pybricks.com>
Change the default DNS to match the gateway IP of a board running in access
point mode (or otherwise acting as a "server").
This fixes the rather meaningless use of "8.8.8.8" as the default DNS
server address offered up to access point clients via the DHCP server.
Since most devices wont be able to proxy access to the real "8.8.8.8".
It allows for a DNS responder to run and provide a catchall response for
captive portal functionality, or just a quality-of-life response to a
friendly URL for access-point based configuration and other applications.
Signed-off-by: Phil Howard <phil@gadgetoid.com>
This contains a string useful for identifying the underlying machine. This
string is kept consistent with the second part of the REPL banner via the
new config option MICROPY_BANNER_MACHINE.
This makes os.uname() more or less redundant, as all the information in
os.uname() is now available in the sys module.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds the git hash and build date to sys.version. This is
allowed according to CPython docs, and is what PyPy does. The docs state:
A string containing the version number of the Python interpreter plus
additional information on the build number and compiler used.
Eg on CPython:
Python 3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.version
'3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0]'
and PyPy:
Python 2.7.12 (5.6.0+dfsg-4, Nov 20 2016, 10:43:30)
[PyPy 5.6.0 with GCC 6.2.0 20161109] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>> import sys
>>>> sys.version
'2.7.12 (5.6.0+dfsg-4, Nov 20 2016, 10:43:30)\n[PyPy 5.6.0 with GCC ...
With this commit on MicroPython we now have:
MicroPython v1.18-371-g9d08eb024 on 2022-04-28; linux [GCC 11.2.0] v...
Use Ctrl-D to exit, Ctrl-E for paste mode
>>> import sys
>>> sys.version
'3.4.0; MicroPython v1.18-371-g9d08eb024 on 2022-04-28'
Note that the start of the banner is the same as the end of sys.version.
This helps to keep code size under control because the string can be reused
by the compiler.
Signed-off-by: Damien George <damien@micropython.org>
Auto-indent still works as the default behaviour, but it is now undone and
disabled if there is a space/tab immediately after an automatically-added
indent. This makes the REPL behaviour closer to CPython, and in particular
allows text to be pasted at the normal REPL.
Addresses issue #7925.
Signed-off-by: Damien George <damien@micropython.org>
Entering tab at the REPL will now make it insert an indent (4 spaces) in
the following cases:
- after any whitespace on a line
- at the start of a line that is not the first line
This changes the existing behaviour where a tab would insert an indent only
if there were no matches in the auto-complete search, and it was the start
of the line. This means, if there were any symbols in the global
namespace, tab could never be used to indent.
Note that entering tab at the start of the first line will still do
auto-completion, but will now do nothing if there are no symbols in the
global namespace, which is more consistent than before.
Signed-off-by: Damien George <damien@micropython.org>
Changes in this commit:
- Start the RTC Timer at system boot. Otherwise time.time() will advance
only if an RTC() object was created.
- Set the time to a more recent date than Jan 1, 1970, if not set. That is
2013/10/14, 19:53:11, MicroPython's first commit.
- Compensate an underflow in in timeutils_seconds_since_2000(), called by
time.time(), if the time is set to a pre-2000 date.
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing. They are also
smaller on disk.
But the real benefit of .mpy files comes when they are frozen into the
firmware. This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device. These C data structures can be executed in-place, ie directly from
ROM. This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).
The downside of frozen code is that it requires recompiling and reflashing
the entire firmware. This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).
This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware. The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place. If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.
With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).
The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded. Instead only a small qstr table needs to be built (and put in RAM)
at import time. This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory. Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).
In more detail, in the VM what used to be (schematically):
qst = DECODE_QSTR_VALUE;
is now (schematically):
idx = DECODE_QSTR_INDEX;
qst = qstr_table[idx];
That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values. Only qstr_table needs to be linked
when the .mpy is loaded.
Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.
The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before
The qstr indirection in the bytecode has only a small impact on VM
performance. For stm32 on PYBv1.0 the performance change of this commit
is:
diff of scores (higher is better)
N=100 M=100 baseline -> this-commit diff diff% (error%)
bm_chaos.py 371.07 -> 357.39 : -13.68 = -3.687% (+/-0.02%)
bm_fannkuch.py 78.72 -> 77.49 : -1.23 = -1.563% (+/-0.01%)
bm_fft.py 2591.73 -> 2539.28 : -52.45 = -2.024% (+/-0.00%)
bm_float.py 6034.93 -> 5908.30 : -126.63 = -2.098% (+/-0.01%)
bm_hexiom.py 48.96 -> 47.93 : -1.03 = -2.104% (+/-0.00%)
bm_nqueens.py 4510.63 -> 4459.94 : -50.69 = -1.124% (+/-0.00%)
bm_pidigits.py 650.28 -> 644.96 : -5.32 = -0.818% (+/-0.23%)
core_import_mpy_multi.py 564.77 -> 581.49 : +16.72 = +2.960% (+/-0.01%)
core_import_mpy_single.py 68.67 -> 67.16 : -1.51 = -2.199% (+/-0.01%)
core_qstr.py 64.16 -> 64.12 : -0.04 = -0.062% (+/-0.00%)
core_yield_from.py 362.58 -> 354.50 : -8.08 = -2.228% (+/-0.00%)
misc_aes.py 429.69 -> 405.59 : -24.10 = -5.609% (+/-0.01%)
misc_mandel.py 3485.13 -> 3416.51 : -68.62 = -1.969% (+/-0.00%)
misc_pystone.py 2496.53 -> 2405.56 : -90.97 = -3.644% (+/-0.01%)
misc_raytrace.py 381.47 -> 374.01 : -7.46 = -1.956% (+/-0.01%)
viper_call0.py 576.73 -> 572.49 : -4.24 = -0.735% (+/-0.04%)
viper_call1a.py 550.37 -> 546.21 : -4.16 = -0.756% (+/-0.09%)
viper_call1b.py 438.23 -> 435.68 : -2.55 = -0.582% (+/-0.06%)
viper_call1c.py 442.84 -> 440.04 : -2.80 = -0.632% (+/-0.08%)
viper_call2a.py 536.31 -> 532.35 : -3.96 = -0.738% (+/-0.06%)
viper_call2b.py 382.34 -> 377.07 : -5.27 = -1.378% (+/-0.03%)
And for unix on x64:
diff of scores (higher is better)
N=2000 M=2000 baseline -> this-commit diff diff% (error%)
bm_chaos.py 13594.20 -> 13073.84 : -520.36 = -3.828% (+/-5.44%)
bm_fannkuch.py 60.63 -> 59.58 : -1.05 = -1.732% (+/-3.01%)
bm_fft.py 112009.15 -> 111603.32 : -405.83 = -0.362% (+/-4.03%)
bm_float.py 246202.55 -> 247923.81 : +1721.26 = +0.699% (+/-2.79%)
bm_hexiom.py 615.65 -> 617.21 : +1.56 = +0.253% (+/-1.64%)
bm_nqueens.py 215807.95 -> 215600.96 : -206.99 = -0.096% (+/-3.52%)
bm_pidigits.py 8246.74 -> 8422.82 : +176.08 = +2.135% (+/-3.64%)
misc_aes.py 16133.00 -> 16452.74 : +319.74 = +1.982% (+/-1.50%)
misc_mandel.py 128146.69 -> 130796.43 : +2649.74 = +2.068% (+/-3.18%)
misc_pystone.py 83811.49 -> 83124.85 : -686.64 = -0.819% (+/-1.03%)
misc_raytrace.py 21688.02 -> 21385.10 : -302.92 = -1.397% (+/-3.20%)
The code size change is (firmware with a lot of frozen code benefits the
most):
bare-arm: +396 +0.697%
minimal x86: +1595 +0.979% [incl +32(data)]
unix x64: +2408 +0.470% [incl +800(data)]
unix nanbox: +1396 +0.309% [incl -96(data)]
stm32: -1256 -0.318% PYBV10
cc3200: +288 +0.157%
esp8266: -260 -0.037% GENERIC
esp32: -216 -0.014% GENERIC[incl -1072(data)]
nrf: +116 +0.067% pca10040
rp2: -664 -0.135% PICO
samd: +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS
As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.
In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place. Performance is not impacted too much. Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM. This will
essentially be able to replace frozen code for most applications.
Signed-off-by: Damien George <damien@micropython.org>
Frozen modules will be searched preferentially, but gives the user the
ability to override this behavior.
This matches the previous behavior where "" was implicitly the frozen
search path, but the frozen list was checked before the filesystem.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This changes makemanifest.py & mpy-tool.py to merge string and mpy names
into the same list (now mp_frozen_names).
The various paths for loading a frozen module (mp_find_frozen_module) and
checking existence of a frozen module (mp_frozen_stat) use a common
function that searches this list.
In addition, the frozen lookup will now only take place if the path starts
with ".frozen", which needs to be added to sys.path.
This fixes issues #1804, #2322, #3509, #6419.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Some toolchains will have string.h defining various macros which can lead
to compile errors for string function implementations. Not including
string.h fixes this.
An implementation of __memcpy_chk is provided for toolchains that enable
_FORTIFY_SOURCE.
Fixes issue #6046.
Signed-off-by: Alexey 'alexxy' Shvetsov <alexxyum@gmail.com>