This allows prototyping rfcore.c improvements from Python.
This was mostly written by @dpgeorge with small modifications to work after
rfcore_init() by @jimmo.
Before this change there was up to a 128ms delay on incoming payloads from
CPU2 as it was polled by SysTick. Now the RX IRQ immediately schedules the
PendSV.
This is required to allow using WS firmware newer than 1.1.1 concurrently
with USB (e.g. USB VCP). It prevents CPU2 from modifying the CLK48 config
on boot.
Tested on WS=1.8 FUS=1.1.
See AN5289 and https://github.com/micropython/micropython/issues/6316
- Split tables and buffers into SRAM2A/2B.
- Use structs rather than word offsets to access tables.
- Use FLASH_IPCCDBA register value rather than option bytes directly.
Previously the interaction between the different layers of the Bluetooth
stack was different on each port and each stack. This commit defines
common interfaces between them and implements them for cyw43, btstack,
nimble, stm32, unix.
mp_irq_init() is useful when the IRQ object is allocated by the caller.
The mp_irq_methods_t.init method is not used anywhere so has been removed.
Signed-off-by: Damien George <damien@micropython.org>
Updating to Black v20.8b1 there are two changes that affect the code in
this repository:
- If there is a trailing comma in a list (eg [], () or function call) then
that list is now written out with one line per element. So remove such
trailing commas where the list should stay on one line.
- Spaces at the start of """ doc strings are removed.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, if you configure a pin as an output type (I2C in this
example) and then later configure it back as an input, then it will report
the type incorrectly. Example:
>>> import machine
>>> b6 = machine.Pin('B6')
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
>>> machine.I2C(1)
I2C(1, scl=B6, sda=B7, freq=420000)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, pull=Pin.PULL_UP, af=Pin.AF4_I2C1)
>>> b6.init(machine.Pin.IN)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, af=Pin.AF4_I2C1)
With this commit the last print now works:
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
The SCSI driver calls GetCapacity to get the block size and number of
blocks of the underlying block-device/LUN. It caches these values and uses
them later on to verify that reads/writes are within the bounds of the LUN.
But, prior to this commit, there was only one set of cached values for all
LUNs, so the bounds checking for a LUN could use incorrect values, values
from one of the other LUNs that most recently updated the cached values.
This would lead to failed SCSI requests.
This commit fixes this issue by having separate cached values for each LUN.
Signed-off-by: Damien George <damien@micropython.org>
This code is imported from musl, to match existing code in libm_dbl.
The file is also added to the build in stm32/Makefile. It's not needed by
the core code but, similar to c5cc64175b,
allows round() to be used by user C modules or board extensions.
Polling mode will cause failures with the mass-erase command due to USB
timeouts, because the USB IRQs are not being serviced. Swiching from
polling to IRQ mode fixes this because the USB IRQs can be serviced between
page erases.
Note that when the flash is being programmed or erased the MCU is halted
and cannot respond to USB IRQs, because mboot runs from flash, as opposed
to the built-in bootloader which is in system ROM. But the maximum delay
in responding to an IRQ is the time taken to erase a single page, about
100ms for large pages, and that is short enough that the USB does not
timeout on the host side.
Recent tests have shown that in the current mboot code IRQ mode is pretty
much the same speed as polling mode (within timing error), code size is
slightly reduced in IRQ mode, and IRQ mode idles at about half of the power
consumption as polling mode.
This is treated more like a "delay before continuing" in the spec and
official tools and does not appear to be really needed. In particular,
downloading firmware is much slower with non-zero timeouts because the host
must pause by the timeout between sending each DFU_GETSTATUS to poll for
download/erase complete.
The implementation internally uses sector erase to wipe everything except
the sector(s) that mboot lives in (by erasing starting from
APPLICATION_ADDR).
The erase command can take some time (eg an STM32F765 with 2MB of flash
takes 8 to 10 seconds). This time is normally enough to make pydfu.py fail
with a timeout. The DFU standard includes a mechanism for the DFU device
to request a longer timeout as part of the get-status response just before
starting an operation. This timeout functionality has been implemented
here.
Before this commit the USB VCP TX ring-buffer used the basic implementation
where it can only be filled to a maximum of buffer size-1. For a 1024 size
buffer this means the largest packet that can be sent is 1023. Once a
packet of this size is sent the next byte copied in goes to the final byte
in the buffer, so must be sent as a 1 byte packet before the read pointer
can be wrapped around to the beginning. So in large streaming transfers,
watching the USB sniffer you basically get alternating 1023 byte packets
then 1 byte packets.
This commit changes the ring-buffer implementation to a scheme that doesn't
have the full-size limitation, and the USB VCP driver can now achieve a
constant stream of full-sized packets. This scheme introduces a
restriction on the size of the buffer: it must be a power of 2, and the
maximum size is half of the size of the index (in this case the index is
16-bit, so the maximum size would be 32767 bytes rounded to 16384 for a
power-of-2). But this is not a big limitation because the size of the
ring-buffer prior to this commit was restricted to powers of 2 because it
was using a mask-based method to wrap the indices.
For an explanation of the new scheme see
https://www.snellman.net/blog/archive/2016-12-13-ring-buffers/
The RX buffer could likely do with a similar change, though as it's not
read from in chunks like the TX buffer it doesn't present the same issue,
all that's lost is one byte capacity of the buffer.
USB VCP TX throughput is improved by this change, potentially doubling the
speed in certain cases.
By passing through the I2C instance to the application callbacks, the
application can implement multiple I2C slave devices on different
peripherals (eg I2C1 and I2C2).
This commit also adds a proper rw argument to i2c_slave_process_addr_match
for F7/H7/WB MCUs, and enables the i2c_slave_process_tx_end callback.
Mboot is also updated for these changes.
Signed-off-by: Damien George <damien@micropython.org>
Mboot now supports FAT, LFS1 and LFS2 filesystems, to load firmware from.
The filesystem needed by the board must be explicitly enabled by the
configuration variables MBOOT_VFS_FAT, MBOOT_VFS_LFS1 and MBOOT_VFS_LFS2.
Boards that previously used FAT implicitly (with MBOOT_FSLOAD enabled) must
now add the following config to mpconfigboard.h:
#define MBOOT_VFS_FAT (1)
Signed-off-by: Damien George <damien@micropython.org>
This commit factors the code for files and streaming to separate source
files (vfs_fat.c and gzstream.c respectively) and introduces an abstract
gzstream interface to make it easier to plug in different filesystems.
Signed-off-by: Damien George <damien@micropython.org>
There's no need to do a directory listing to search for the given firmware
filename, it just takes extra time and code size. Instead this commit
changes it so that the requested firmware file is opened immediately and
will abort if the file couldn't be opened. This also allows to specify
files in a directory.
Signed-off-by: Damien George <damien@micropython.org>
Previously, if FAT was not enabled but LFS1/2 was then MICROPY_PY_IO_FILEIO
would be disabled and file binary-mode was not supported.
Signed-off-by: Damien George <damien@micropython.org>
Commit 8675858465 switched to using the CMSIS
provided SystemInit function which sets VTOR to 0x00000000 (previously it
was 0x08000000). A VTOR of 0x00000000 will be correct on some MCUs but not
on others where the built-in bootloader is remapped to this address, via
__HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH().
To make sure mboot has the correct vector table, this commit explicitly
sets VTOR to the correct value of 0x08000000.
Signed-off-by: Damien George <damien@micropython.org>
There's no need to duplicate this functionality in mboot, the code provided
in stm32lib/CMSIS does the same thing and makes it easier to support other
MCU series.
Signed-off-by: Damien George <damien@micropython.org>
The flash functions in ports/stm32/flash.c are almost identical to those in
ports/stm32/mboot/main.c, so remove the duplicated code in mboot and use
instead the main stm32 code. This also allows supporting other MCU series.
Signed-off-by: Damien George <damien@micropython.org>