In CPython IOError (and EnvironmentError) is deprecated and aliased to
OSError. All modules that used to raise IOError now raise OSError (or a
derived exception).
In Micro Python we never used IOError (except 1 place, incorrectly) and
so don't need to keep it.
See http://legacy.python.org/dev/peps/pep-3151/ for background.
Viper can now do the following:
def store(p:ptr8, c:int):
p[0] = c
This does a store of c to the memory pointed to by p using a machine
instructions inline in the code.
reversed function now implemented, and works for tuple, list, str, bytes
and user objects with __len__ and __getitem__.
Renamed mp_builtin_len to mp_obj_len to make it publically available (eg
for reversed).
The user code should call micropython.alloc_emergency_exception_buf(size)
where size is the size of the buffer used to print the argument
passed to the exception.
With the test code from #732, and a call to
micropython.alloc_emergenncy_exception_buf(100) the following error is
now printed:
```python
>>> import heartbeat_irq
Uncaught exception in Timer(4) interrupt handler
Traceback (most recent call last):
File "0://heartbeat_irq.py", line 14, in heartbeat_cb
NameError: name 'led' is not defined
```
Functionality we provide in builtin io module is fairly minimal. Some
code, including CPython stdlib, depends on more functionality. So, there's
a choice to either implement it in C, or move it _io, and let implement other
functionality in Python. 2nd choice is pursued. This setup matches CPython
too (_io is builtin, io is Python-level).
io.FileIO is binary I/O, ans actually optional. Default file type is
io.TextIOWrapper, which provides str results. CPython3 explicitly describes
io.TextIOWrapper as buffered I/O, but we don't have buffering support yet
anyway.
Now schedule is: for native types, we call ->make_new() C-level method, which
should perform actions of __new__ and __init__ (note that this is not
compliant, but is efficient), but for user types, __new__ and __init__ are
called as expected.
Also, make sure we convert scalar attribute value to a bound-pair tight in
mp_obj_class_lookup() method, which avoids converting it again and again in
its callers.
You can now do:
X = const(123)
Y = const(456 + X)
and the compiler will replace X and Y with their values.
See discussion in issue #266 and issue #573.
Need to have a policy as to how far we go adding keyword support to
built ins. It's nice to have, and gets better CPython compatibility,
but hurts the micro nature of uPy.
Addresses issue #577.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
Of course, keywords are turned into lexer tokens in the lexer, so will
never need to be interned (unless you do something like x="def").
As it is now, the following on pyboard makes no new qstrs:
import pyb
pyb.info()
The logic appears to be that (at least beginning of) sys.versions is the
version of reference Python language implemented, not version of particular
implementation.
Also, bump set versions at 3.4.0, based on @dpgeorge preference.
Per https://docs.python.org/3.3/reference/import.html , this is the way to
tell module from package: "Specifically, any module that contains a __path__
attribute is considered a package." And it for sure will be needed to
implement relative imports.
Only calcsize() and unpack() functions provided so far, for little-endian
byte order. Format strings don't support repition spec (like "2b3i").
Unfortunately, dealing with all the various binary type sizes and alignments
will lead to quite a bloated "binary" helper functions - if optimizing for
speed. Need to think if using dynamic parametrized algos makes more sense.
These two are apprerently the most concise and efficient way to convert
int to/from bytes in Python. The alternatives are struct and array modules,
but methods using them are more verbose in Python code and less efficient
in memory/cycles.
This is to reduce ROM usage. stream_p is used in file and socket types
only (at the moment), so seems a good idea to make the protocol
functions a pointer instead of the actual structure.
It saves 308 bytes of ROM in the stmhal/ port, 928 in unix/.
It's not completely satisfactory, because a failed call to __getattr__
should not raise an exception.
__setattr__ could be implemented, but it would slow down all stores to a
user created object. Need to implement some caching system.
mp_module_obj_t can now be put in ROM.
Configuration of float type is now similar to longint: can now choose
none, float or double as the implementation.
math module has basic math functions. For STM port, these are not yet
implemented (they are just stub functions).
Each built-in exception is now a type, with base type BaseException.
C exceptions are created by passing a pointer to the exception type to
make an instance of. When raising an exception from the VM, an
instance is created automatically if an exception type is raised (as
opposed to an exception instance).
Exception matching (RT_BINARY_OP_EXCEPTION_MATCH) is now proper.
Handling of parse error changed to match new exceptions.
mp_const_type renamed to mp_type_type for consistency.
Ultimately all static strings should be qstr. This entry in the type
structure is only used for printing error messages (to tell the type of
the bad argument), and printing objects that don't supply a .print method.