Need to have a policy as to how far we go adding keyword support to
built ins. It's nice to have, and gets better CPython compatibility,
but hurts the micro nature of uPy.
Addresses issue #577.
There are 2 locations in parser, and 1 in compiler, where memory
allocation is not precise. In the parser it's the rule stack and result
stack, in the compiler it's the array for the identifiers in the current
scope. All other mallocs are exact (ie they don't allocate more than is
needed).
This patch adds tuning options (MP_ALLOC_*) to mpconfig.h for these 3
inexact allocations.
The inexact allocations in the parser should actually be close to
logarithmic: you need an exponentially larger script (absent pathological
cases) to use up more room on the rule and result stacks. As such, the
default allocation policy for these is now to start with a modest sized
stack, but grow only in small increments.
For the identifier arrays in the compiler, these now start out quite
small (4 entries, since most functions don't have that many ids), and
grow incrementally by 6 (since if you have more ids than 4, you probably
have quite a few more, but it wouldn't be exponentially more).
Partially addresses issue #560.
This will work if MICROPY_DEBUG_PRINTERS is defined, which is only for
unix/windows ports. This makes it convenient to user uPy normally, but
easily get bytecode dump on the spot if needed, without constant recompiles
back and forth.
TODO: Add more useful debug output, adjust verbosity level on which
specifically bytecode dump happens.
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
By default mingw outputs 3 digits instead of the standard 2 so all float
tests using printf fail. Using setenv at the start of the program fixes this.
To accomodate calling platform specific initialization a
MICROPY_MAIN_INIT_FUNC macro is used which is called in mp_init()
The original parsing would error out on any C declarations that are not typedefs
or extern variables. This limits what can go in mpconfig.h and mpconfigport.h,
as they are included in qstr.h. For instance even a function declaration would be
rejected and including system headers is a complete no-go.
That seems too limiting for a global config header, so makeqstrdata now
ignores everything that does not match a qstr definition.
alloca() is declared in alloca.h which als happens to be included by stdlib.h.
On mingw however it resides in malloc.h only.
So if we include alloca.h directly, and add an alloca.h for mingw in it's port
directory we can get rid of the mingw-specific define to include malloc.h
and the other ports are happy as well.
Biggest part of this support is refactoring mp_obj_class_lookup() to return
standard "bound member" pair (mp_obj_t[2]). Actual support of inherited
native methods is 3 lines then. Some inherited features may be not supported
yet (e.g. native class methods, native properties, etc., etc.). There may
be opportunities for further optimization too.
This implements checking of base types, allocation and basic initialization,
and optimized support for special method lookups. Other features are not yet
supported.
Of course, keywords are turned into lexer tokens in the lexer, so will
never need to be interned (unless you do something like x="def").
As it is now, the following on pyboard makes no new qstrs:
import pyb
pyb.info()
New way uses slightly less ROM and RAM, should be slightly faster, and,
most importantly, allows to catch the error "non-keyword arg following
keyword arg".
Addresses issue #466.
Also add some more debugging output to gc_dump_alloc_table().
Now that newly allocated heap is always zero'd, maybe we just make this
a policy for the uPy API to keep it simple (ie any new implementation of
memory allocation must zero all allocations). This follows the D
language philosophy.
Before this patch, a previously used memory block which had pointers in
it may still retain those pointers if the new user of that block does
not actually use the entire block. Eg, if I want 5 blocks worth of
heap, I actually get 8 (round up to nearest 4). Then I never use the
last 3, so they keep their old values, which may be pointers pointing to
the heap, hence preventing GC.
In rare (or maybe not that rare) cases, this leads to long, unintentional
"linked lists" within the GC'd heap, filling it up completely. It's
pretty rare, because you have to reuse exactly that memory which is part
of this "linked list", and reuse it in just the right way.
This should fix issue #522, and might have something to do with
issue #510.
3 emitter functions are needed only for emitcpy, and so we can #if them
out when compiling with emitcpy support.
Also remove unused SETUP_LOOP bytecode.
Closed over variables are now passed on the stack, instead of creating a
tuple and passing that. This way memory for the closed over variables
can be allocated within the closure object itself. See issue #510 for
background.
There were typos, various rounding errors trying to do concurrent counting
in bytes vs blocks, complex conditional paths, superfluous variables, etc.,
etc., all leading to obscure segfaults.