Commit Graph

55 Commits

Author SHA1 Message Date
Damien George 538c3c0a55 py: Change jump opcodes to emit 1-byte jump offset when possible.
This commit introduces changes:

- All jump opcodes are changed to have variable length arguments, of either
  1 or 2 bytes (previously they were fixed at 2 bytes).  In most cases only
  1 byte is needed to encode the short jump offset, saving bytecode size.

- The bytecode emitter now selects 1 byte jump arguments when the jump
  offset is guaranteed to fit in 1 byte.  This is achieved by checking if
  the code size changed during the last pass and, if it did (if it shrank),
  then requesting that the compiler make another pass to get the correct
  offsets of the now-smaller code.  This can continue multiple times until
  the code stabilises.  The code can only ever shrink so this iteration is
  guaranteed to complete.  In most cases no extra passes are needed, the
  original 4 passes are enough to get it right by the 4th pass (because the
  2nd pass computes roughly the correct labels and the 3rd pass computes
  the correct size for the jump argument).

This change to the jump opcode encoding reduces .mpy files and RAM usage
(when bytecode is in RAM) by about 2% on average.

The performance of the VM is not impacted, at least within measurment of
the performance benchmark suite.

Code size is reduced for builds that include a decent amount of frozen
bytecode.  ARM Cortex-M builds without any frozen code increase by about
350 bytes.

Signed-off-by: Damien George <damien@micropython.org>
2022-03-28 15:41:38 +11:00
Damien George f2040bfc7e py: Rework bytecode and .mpy file format to be mostly static data.
Background: .mpy files are precompiled .py files, built using mpy-cross,
that contain compiled bytecode functions (and can also contain machine
code). The benefit of using an .mpy file over a .py file is that they are
faster to import and take less memory when importing.  They are also
smaller on disk.

But the real benefit of .mpy files comes when they are frozen into the
firmware.  This is done by loading the .mpy file during compilation of the
firmware and turning it into a set of big C data structures (the job of
mpy-tool.py), which are then compiled and downloaded into the ROM of a
device.  These C data structures can be executed in-place, ie directly from
ROM.  This makes importing even faster because there is very little to do,
and also means such frozen modules take up much less RAM (because their
bytecode stays in ROM).

The downside of frozen code is that it requires recompiling and reflashing
the entire firmware.  This can be a big barrier to entry, slows down
development time, and makes it harder to do OTA updates of frozen code
(because the whole firmware must be updated).

This commit attempts to solve this problem by providing a solution that
sits between loading .mpy files into RAM and freezing them into the
firmware.  The .mpy file format has been reworked so that it consists of
data and bytecode which is mostly static and ready to run in-place.  If
these new .mpy files are located in flash/ROM which is memory addressable,
the .mpy file can be executed (mostly) in-place.

With this approach there is still a small amount of unpacking and linking
of the .mpy file that needs to be done when it's imported, but it's still
much better than loading an .mpy from disk into RAM (although not as good
as freezing .mpy files into the firmware).

The main trick to make static .mpy files is to adjust the bytecode so any
qstrs that it references now go through a lookup table to convert from
local qstr number in the module to global qstr number in the firmware.
That means the bytecode does not need linking/rewriting of qstrs when it's
loaded.  Instead only a small qstr table needs to be built (and put in RAM)
at import time.  This means the bytecode itself is static/constant and can
be used directly if it's in addressable memory.  Also the qstr string data
in the .mpy file, and some constant object data, can be used directly.
Note that the qstr table is global to the module (ie not per function).

In more detail, in the VM what used to be (schematically):

    qst = DECODE_QSTR_VALUE;

is now (schematically):

    idx = DECODE_QSTR_INDEX;
    qst = qstr_table[idx];

That allows the bytecode to be fixed at compile time and not need
relinking/rewriting of the qstr values.  Only qstr_table needs to be linked
when the .mpy is loaded.

Incidentally, this helps to reduce the size of bytecode because what used
to be 2-byte qstr values in the bytecode are now (mostly) 1-byte indices.
If the module uses the same qstr more than two times then the bytecode is
smaller than before.

The following changes are measured for this commit compared to the
previous (the baseline):
- average 7%-9% reduction in size of .mpy files
- frozen code size is reduced by about 5%-7%
- importing .py files uses about 5% less RAM in total
- importing .mpy files uses about 4% less RAM in total
- importing .py and .mpy files takes about the same time as before

The qstr indirection in the bytecode has only a small impact on VM
performance.  For stm32 on PYBv1.0 the performance change of this commit
is:

diff of scores (higher is better)
N=100 M=100             baseline -> this-commit  diff      diff% (error%)
bm_chaos.py               371.07 ->  357.39 :  -13.68 =  -3.687% (+/-0.02%)
bm_fannkuch.py             78.72 ->   77.49 :   -1.23 =  -1.563% (+/-0.01%)
bm_fft.py                2591.73 -> 2539.28 :  -52.45 =  -2.024% (+/-0.00%)
bm_float.py              6034.93 -> 5908.30 : -126.63 =  -2.098% (+/-0.01%)
bm_hexiom.py               48.96 ->   47.93 :   -1.03 =  -2.104% (+/-0.00%)
bm_nqueens.py            4510.63 -> 4459.94 :  -50.69 =  -1.124% (+/-0.00%)
bm_pidigits.py            650.28 ->  644.96 :   -5.32 =  -0.818% (+/-0.23%)
core_import_mpy_multi.py  564.77 ->  581.49 :  +16.72 =  +2.960% (+/-0.01%)
core_import_mpy_single.py  68.67 ->   67.16 :   -1.51 =  -2.199% (+/-0.01%)
core_qstr.py               64.16 ->   64.12 :   -0.04 =  -0.062% (+/-0.00%)
core_yield_from.py        362.58 ->  354.50 :   -8.08 =  -2.228% (+/-0.00%)
misc_aes.py               429.69 ->  405.59 :  -24.10 =  -5.609% (+/-0.01%)
misc_mandel.py           3485.13 -> 3416.51 :  -68.62 =  -1.969% (+/-0.00%)
misc_pystone.py          2496.53 -> 2405.56 :  -90.97 =  -3.644% (+/-0.01%)
misc_raytrace.py          381.47 ->  374.01 :   -7.46 =  -1.956% (+/-0.01%)
viper_call0.py            576.73 ->  572.49 :   -4.24 =  -0.735% (+/-0.04%)
viper_call1a.py           550.37 ->  546.21 :   -4.16 =  -0.756% (+/-0.09%)
viper_call1b.py           438.23 ->  435.68 :   -2.55 =  -0.582% (+/-0.06%)
viper_call1c.py           442.84 ->  440.04 :   -2.80 =  -0.632% (+/-0.08%)
viper_call2a.py           536.31 ->  532.35 :   -3.96 =  -0.738% (+/-0.06%)
viper_call2b.py           382.34 ->  377.07 :   -5.27 =  -1.378% (+/-0.03%)

And for unix on x64:

diff of scores (higher is better)
N=2000 M=2000        baseline -> this-commit     diff      diff% (error%)
bm_chaos.py          13594.20 ->  13073.84 :  -520.36 =  -3.828% (+/-5.44%)
bm_fannkuch.py          60.63 ->     59.58 :    -1.05 =  -1.732% (+/-3.01%)
bm_fft.py           112009.15 -> 111603.32 :  -405.83 =  -0.362% (+/-4.03%)
bm_float.py         246202.55 -> 247923.81 : +1721.26 =  +0.699% (+/-2.79%)
bm_hexiom.py           615.65 ->    617.21 :    +1.56 =  +0.253% (+/-1.64%)
bm_nqueens.py       215807.95 -> 215600.96 :  -206.99 =  -0.096% (+/-3.52%)
bm_pidigits.py        8246.74 ->   8422.82 :  +176.08 =  +2.135% (+/-3.64%)
misc_aes.py          16133.00 ->  16452.74 :  +319.74 =  +1.982% (+/-1.50%)
misc_mandel.py      128146.69 -> 130796.43 : +2649.74 =  +2.068% (+/-3.18%)
misc_pystone.py      83811.49 ->  83124.85 :  -686.64 =  -0.819% (+/-1.03%)
misc_raytrace.py     21688.02 ->  21385.10 :  -302.92 =  -1.397% (+/-3.20%)

The code size change is (firmware with a lot of frozen code benefits the
most):

       bare-arm:  +396 +0.697%
    minimal x86: +1595 +0.979% [incl +32(data)]
       unix x64: +2408 +0.470% [incl +800(data)]
    unix nanbox: +1396 +0.309% [incl -96(data)]
          stm32: -1256 -0.318% PYBV10
         cc3200:  +288 +0.157%
        esp8266:  -260 -0.037% GENERIC
          esp32:  -216 -0.014% GENERIC[incl -1072(data)]
            nrf:  +116 +0.067% pca10040
            rp2:  -664 -0.135% PICO
           samd:  +844 +0.607% ADAFRUIT_ITSYBITSY_M4_EXPRESS

As part of this change the .mpy file format version is bumped to version 6.
And mpy-tool.py has been improved to provide a good visualisation of the
contents of .mpy files.

In summary: this commit changes the bytecode to use qstr indirection, and
reworks the .mpy file format to be simpler and allow .mpy files to be
executed in-place.  Performance is not impacted too much.  Eventually it
will be possible to store such .mpy files in a linear, read-only, memory-
mappable filesystem so they can be executed from flash/ROM.  This will
essentially be able to replace frozen code for most applications.

Signed-off-by: Damien George <damien@micropython.org>
2022-02-24 18:08:43 +11:00
Jim Mussared b326edf68c all: Remove MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE.
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.

This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.

The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).

It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.

For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:

diff of scores (higher is better)
N=2000 M=2000       bccache -> attrmapcache      diff      diff% (error%)
bm_chaos.py        13742.56 ->   13905.67 :   +163.11 =  +1.187% (+/-3.75%)
bm_fannkuch.py        60.13 ->      61.34 :     +1.21 =  +2.012% (+/-2.11%)
bm_fft.py         113083.20 ->  114793.68 :  +1710.48 =  +1.513% (+/-1.57%)
bm_float.py       256552.80 ->  243908.29 : -12644.51 =  -4.929% (+/-1.90%)
bm_hexiom.py         521.93 ->     625.41 :   +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py     197544.25 ->  217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py      8072.98 ->    8198.75 :   +125.77 =  +1.558% (+/-3.22%)
misc_aes.py        17283.45 ->   16480.52 :   -802.93 =  -4.646% (+/-0.82%)
misc_mandel.py     99083.99 ->  128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py    83860.10 ->   82592.56 :  -1267.54 =  -1.511% (+/-2.27%)
misc_raytrace.py   21490.40 ->   22227.23 :   +736.83 =  +3.429% (+/-1.88%)

This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).

The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):

diff of scores (higher is better)
N=2000 M=2000        native -> nat-attrmapcache  diff      diff% (error%)
bm_chaos.py        14130.62 ->   15464.68 :  +1334.06 =  +9.441% (+/-7.11%)
bm_fannkuch.py        74.96 ->      76.16 :     +1.20 =  +1.601% (+/-1.80%)
bm_fft.py         166682.99 ->  168221.86 :  +1538.87 =  +0.923% (+/-4.20%)
bm_float.py       233415.23 ->  265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py         628.59 ->     734.17 :   +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py     225418.44 ->  232926.45 :  +7508.01 =  +3.331% (+/-3.10%)
bm_pidigits.py      6322.00 ->    6379.52 :    +57.52 =  +0.910% (+/-5.62%)
misc_aes.py        20670.10 ->   27223.18 :  +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py    138221.11 ->  152014.01 : +13792.90 =  +9.979% (+/-2.46%)
misc_pystone.py    85032.14 ->  105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py   19800.01 ->   23350.73 :  +3550.72 = +17.933% (+/-2.79%)

In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.

See #7680 for further discussion.  And see also #7653 for a discussion
about simplifying mpy-cross options.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2021-09-16 16:04:03 +10:00
Damien George d4b706c4d0 py: Add option to compile without any error messages at all.
This introduces a new option, MICROPY_ERROR_REPORTING_NONE, which
completely disables all error messages.  To be used in cases where
MicroPython needs to fit in very limited systems.

Signed-off-by: Damien George <damien@micropython.org>
2021-04-27 23:51:52 +10:00
Jim Mussared def76fe4d9 all: Use MP_ERROR_TEXT for all error messages. 2020-04-05 15:02:06 +10:00
Jim Mussared a9a745e4b4 py: Use preprocessor to detect error reporting level (terse/detailed).
Instead of compiler-level if-logic.  This is necessary to know what error
strings are included in the build at the preprocessor stage, so that string
compression can be implemented.
2020-04-05 14:11:51 +10:00
Damien George 69661f3343 all: Reformat C and Python source code with tools/codeformat.py.
This is run with uncrustify 0.70.1, and black 19.10b0.
2020-02-28 10:33:03 +11:00
Damien George ad7213d3c3 py: Add mp_raise_msg_varg helper and use it where appropriate.
This commit adds mp_raise_msg_varg(type, fmt, ...) as a helper for
nlr_raise(mp_obj_new_exception_msg_varg(type, fmt, ...)).  It makes the
C-level API for raising exceptions more consistent, and reduces code size
on most ports:

   bare-arm:   +28 +0.042%
minimal x86:  +100 +0.067%
   unix x64:   -56 -0.011%
unix nanbox:  -300 -0.068%
      stm32:  -204 -0.054% PYBV10
     cc3200:    +0 +0.000%
    esp8266:   -64 -0.010% GENERIC
      esp32:  -104 -0.007% GENERIC
        nrf:  -136 -0.094% pca10040
       samd:    +0 +0.000% ADAFRUIT_ITSYBITSY_M4_EXPRESS
2020-02-13 11:52:40 +11:00
Damien George 1d0423419b py/bc: Don't include mp_decode_uint funcs when not needed.
These are now only needed when persistent code is disabled.
2019-10-01 12:26:22 +10:00
Damien George c8c0fd4ca3 py: Rework and compress second part of bytecode prelude.
This patch compresses the second part of the bytecode prelude which
contains the source file name, function name, source-line-number mapping
and cell closure information.  This part of the prelude now begins with a
single varible length unsigned integer which encodes 2 numbers, being the
byte-size of the following 2 sections in the header: the "source info
section" and the "closure section".  After decoding this variable unsigned
integer it's possible to skip over one or both of these sections very
easily.

This scheme saves about 2 bytes for most functions compared to the original
format: one in the case that there are no closure cells, and one because
padding was eliminated.
2019-10-01 12:26:22 +10:00
Damien George b5ebfadbd6 py: Compress first part of bytecode prelude.
The start of the bytecode prelude contains 6 numbers telling the amount of
stack needed for the Python values and exceptions, and the signature of the
function.  Prior to this patch these numbers were all encoded one after the
other (2x variable unsigned integers, then 4x bytes), but using so many
bytes is unnecessary.

An entropy analysis of around 150,000 bytecode functions from the CPython
standard library showed that the optimal Shannon coding would need about
7.1 bits on average to encode these 6 numbers, compared to the existing 48
bits.

This patch attempts to get close to this optimal value by packing the 6
numbers into a single, varible-length unsigned integer via bit-wise
interleaving.  The interleaving scheme is chosen to minimise the average
number of bytes needed, and at the same time keep the scheme simple enough
so it can be implemented without too much overhead in code size or speed.
The scheme requires about 10.5 bits on average to store the 6 numbers.

As a result most functions which originally took 6 bytes to encode these 6
numbers now need only 1 byte (in 80% of cases).
2019-10-01 12:26:22 +10:00
Damien George 4c5e1a0368 py/bc: Change mp_code_state_t.exc_sp to exc_sp_idx.
Change from a pointer to an index, to make space in mp_code_state_t.
2019-10-01 12:26:22 +10:00
Damien George 1f7202d122 py/bc: Replace big opcode format table with simple macro. 2019-09-26 15:27:11 +10:00
Damien George b29fae0c56 py/bc: Fix size calculation of UNWIND_JUMP opcode in mp_opcode_format.
Prior to this patch mp_opcode_format would calculate the incorrect size of
the MP_BC_UNWIND_JUMP opcode, missing the additional byte.  But, because
opcodes below 0x10 are unused and treated as bytes in the .mpy load/save
and freezing code, this bug did not show any symptoms, since nested unwind
jumps would rarely (if ever) reach a depth of 16 (so the extra byte of this
opcode would be between 0x01 and 0x0f and be correctly loaded/saved/frozen
simply as an undefined opcode).

This patch fixes this bug by correctly accounting for the additional byte.
        .
2019-09-02 13:30:16 +10:00
Milan Rossa 310b3d1b81 py: Integrate sys.settrace feature into the VM and runtime.
This commit adds support for sys.settrace, allowing to install Python
handlers to trace execution of Python code.  The interface follows CPython
as closely as possible.  The feature is disabled by default and can be
enabled via MICROPY_PY_SYS_SETTRACE.
2019-08-30 16:44:12 +10:00
Damien George 992a6e1dea py/persistentcode: Pack qstrs directly in bytecode to reduce mpy size.
Instead of emitting two bytes in the bytecode for where the linked qstr
should be written to, it is now replaced by the actual qstr data, or a
reference into the qstr window.

Reduces mpy file size by about 10%.
2019-03-05 16:27:34 +11:00
Damien George 5a2599d962 py: Replace POP_BLOCK and POP_EXCEPT opcodes with POP_EXCEPT_JUMP.
POP_BLOCK and POP_EXCEPT are now the same, and are always followed by a
JUMP.  So this optimisation reduces code size, and RAM usage of bytecode by
two bytes for each try-except handler.
2019-03-05 16:09:58 +11:00
Damien George 6bf8ecfe3a py/bc: Fix calculation of opcode size for opcodes with map caching.
All 4 opcodes that can have caching bytes also have qstrs, so the test for
them must go in the qstr part of the code.  The reason this incorrect
calculation of the opcode size did not lead to a bug is because the caching
byte is at the end of the opcode (byte, qstr, qstr, cache) and is always
0x00 when saving/loading, so was just treated as a single byte no-op
opcode.  Hence these opcodes were being saved/loaded/decoded correctly.

Thanks to @malinah for finding the problem and providing the initial patch.
2018-12-13 01:26:55 +11:00
Damien George 933eab46fc py/bc: Update opcode_format_table to match the bytecode. 2017-10-10 10:37:38 +11:00
Damien George a3dc1b1957 all: Remove inclusion of internal py header files.
Header files that are considered internal to the py core and should not
normally be included directly are:
    py/nlr.h - internal nlr configuration and declarations
    py/bc0.h - contains bytecode macro definitions
    py/runtime0.h - contains basic runtime enums

Instead, the top-level header files to include are one of:
    py/obj.h - includes runtime0.h and defines everything to use the
        mp_obj_t type
    py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
        and defines everything to use the general runtime support functions

Additional, specific headers (eg py/objlist.h) can be included if needed.
2017-10-04 12:37:50 +11:00
Stefan Naumann ace9fb5405 py: Add verbose debug compile-time flag MICROPY_DEBUG_VERBOSE.
It enables all the DEBUG_printf outputs in the py/ source code.
2017-08-15 11:53:36 +10:00
Alexander Steffen 55f33240f3 all: Use the name MicroPython consistently in comments
There were several different spellings of MicroPython present in comments,
when there should be only one.
2017-07-31 18:35:40 +10:00
Damien George a8a5d1e8c8 py: Provide mp_decode_uint_skip() to help reduce stack usage.
Taking the address of a local variable leads to increased stack usage, so
the mp_decode_uint_skip() function is added to reduce the need for taking
addresses.  The changes in this patch reduce stack usage of a Python call
by 8 bytes on ARM Thumb, by 16 bytes on non-windowing Xtensa archs, and by
16 bytes on x86-64.  Code size is also slightly reduced on most archs by
around 32 bytes.
2017-06-09 13:36:33 +10:00
Damien George dd11af209d py: Add LOAD_SUPER_METHOD bytecode to allow heap-free super meth calls.
This patch allows the following code to run without allocating on the heap:

    super().foo(...)

Before this patch such a call would allocate a super object on the heap and
then load the foo method and call it right away.  The super object is only
needed to perform the lookup of the method and not needed after that.  This
patch makes an optimisation to allocate the super object on the C stack and
discard it right after use.

Changes in code size due to this patch are:

   bare-arm: +128
    minimal: +232
   unix x64: +416
unix nanbox: +364
     stmhal: +184
    esp8266: +340
     cc3200: +128
2017-04-22 23:39:20 +10:00
Damien George 94c41bb06f py: Use mp_raise_TypeError/mp_raise_ValueError helpers where possible.
Saves 168 bytes on bare-arm.
2017-03-28 22:37:26 +11:00
Damien George 58f23def55 py/bc: Provide better error message for an unexpected keyword argument.
Now, passing a keyword argument that is not expected will correctly report
that fact.  If normal or detailed error messages are enabled then the name
of the unexpected argument will be reported.

This patch decreases the code size of bare-arm and stmhal by 12 bytes, and
cc3200 by 8 bytes.  Other ports (minimal, unix, esp8266) remain the same in
code size.  For terse error message configuration this is because the new
message is shorter than the old one.  For normal (and detailed) error
message configuration this is because the new error message already exists
in py/objnamedtuple.c so there's no extra space in ROM needed for the
string.
2017-03-22 13:40:27 +11:00
Damien George 5640e6dacd py: Provide mp_decode_uint_value to help optimise stack usage.
This has a noticeable improvement on x86-64 and Thumb2 archs, where stack
usage is reduced by 2 machine words in the VM.
2017-03-17 16:50:19 +11:00
Damien George 71a3d6ec3b py: Reduce size of mp_code_state_t structure.
Instead of caching data that is constant (code_info, const_table and
n_state), store just a pointer to the underlying function object from which
this data can be derived.

This helps reduce stack usage for the case when the mp_code_state_t
structure is stored on the stack, as well as heap usage when it's stored
on the heap.

The downside is that the VM becomes a little more complex because it now
needs to derive the data from the underlying function object.  But this
doesn't impact the performance by much (if at all) because most of the
decoding of data is done outside the main opcode loop.  Measurements using
pystone show that little to no performance is lost.

This patch also fixes a nasty bug whereby the bytecode can be reclaimed by
the GC during execution.  With this patch there is always a pointer to the
function object held by the VM during execution, since it's stored in the
mp_code_state_t structure.
2017-03-17 16:39:13 +11:00
Damien George 7d0d7215d2 py: Use mp_raise_msg helper function where appropriate.
Saves the following number of bytes of code space: 176 for bare-arm, 352
for minimal, 272 for unix x86-64, 140 for stmhal, 120 for esp8266.
2016-10-17 12:17:37 +11:00
Damien George 7df9291b6c py: Update opcode format table because 3 opcodes were removed, 1 added.
LIST_APPEND, MAP_ADD and SET_ADD have been removed, and STORE_COMP has
been added in adaf0d865c.
2016-09-23 12:48:57 +10:00
Damien George 581a59a456 py: Rename struct mp_code_state to mp_code_state_t.
Also at _t to mp_exc_stack pre-declaration in struct typedef.
2016-08-27 23:21:00 +10:00
Damien George fea40ad468 py: Fix bug passing a string as a keyword arg in a dict.
Addresses issue #1998.
2016-04-21 16:51:36 +01:00
Damien George 7b05b1b225 py/bc: Update opcode format table now that MP_BC_NOT opcode is gone.
MP_BC_NOT was removed and the "not" operation made a proper unary
operator, and the opcode format table needs to be updated to reflect
this change (but actually the change is only cosmetic).
2016-01-28 16:11:41 +00:00
Damien George 1d899e1783 py/bc: Use size_t instead of mp_uint_t to count size of state and args. 2015-12-17 12:33:42 +00:00
Damien George 999cedb90f py: Wrap all obj-ptr conversions in MP_OBJ_TO_PTR/MP_OBJ_FROM_PTR.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.

This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
2015-11-29 14:25:35 +00:00
Damien George 9f6976b74e py: Make mp_setup_code_state take concrete pointer for func arg. 2015-11-29 14:25:04 +00:00
Damien George d8c834c95d py: Add MICROPY_PERSISTENT_CODE_LOAD/SAVE to load/save bytecode.
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
2015-11-13 12:49:18 +00:00
Damien George 713ea1800d py: Add constant table to bytecode.
Contains just argument names at the moment but makes it easy to add
arbitrary constants.
2015-11-13 12:49:18 +00:00
Damien George 3a3db4dcf0 py: Put all bytecode state (arg count, etc) in bytecode. 2015-11-13 12:49:18 +00:00
Damien George 9b7f583b0c py: Reorganise bytecode layout so it's more structured, easier to edit. 2015-11-13 12:49:18 +00:00
Damien George 3a2171e406 py: Eliminate some cases which trigger unused parameter warnings. 2015-09-04 16:53:46 +01:00
Damien George 044c473de2 py: Add %q format support to mp_[v]printf, and use it. 2015-04-16 14:30:16 +00:00
Damien George 9988618e0e py: Implement full func arg passing for native emitter.
This patch gets full function argument passing working with native
emitter.  Includes named args, keyword args, default args, var args
and var keyword args.  Fully Python compliant.

It reuses the bytecode mp_setup_code_state function to do all the hard
work.  This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
2015-04-07 22:43:28 +01:00
Damien George c9aa1883ed py: Simplify bytecode prelude when encoding closed over variables. 2015-04-07 00:08:17 +01:00
Paul Sokolovsky 2039757b85 vm: Initial support for calling bytecode functions w/o C stack ("stackless"). 2015-04-03 00:03:07 +03:00
stijn 3cc17c69ff py: Allow retrieving a function's __name__.
Disabled by default.  Enabled on unix and stmhal ports.
2015-03-20 23:13:32 +00:00
Damien George 963a5a3e82 py, unix: Allow to compile with -Wsign-compare.
See issue #699.
2015-01-16 17:47:07 +00:00
Damien George 51dfcb4bb7 py: Move to guarded includes, everywhere in py/ core.
Addresses issue #1022.
2015-01-01 20:32:09 +00:00
Damien George 7f23384d49 py: Make terse_arg_mismatch a global function and use it elsewhere.
Reduces code size when MICROPY_ERROR_REPORTING_TERSE is selected.
2015-01-01 15:33:50 +00:00
Damien George 7860c2a68a py: Fix some macros defines; cleanup some includes. 2014-11-05 21:16:41 +00:00